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FOREWORD

This report fulfills the final reporting requirement for the development of a

design procedure for missile boost-phase control performed under National

Aeronautics and Space Administration Contract NAS8-20155.

The program was initiated by the Aero-Astrodynamics Laboratory of National

Aeronautics and Space Administration, George C. Marshall Space Flight Cen-

ter. The research upon which this report is based was carried out by the

Systems and Research Division of Honeywell Inc. Dr. Grant B. Skelton of

Honeywell was principal investigator for the program. Mr. Robert C. Lewis

and Mr, Billy G, Davis of the Aero-Astrodynamics Laboratory were the

program's contracting officer representatives. The study began on 1 May 1965

and terminated on 1 May 1966.

The research program at Honeywell was under the supervision of Dr. E. R.

Rang. Mr. C. R. Stone did the physical modeling work reported, and Mr.

M. D. Ward did all of the digital computer computation. The simulation

studies were done by Mr. L. D. Edinger and Mr. G. D. White of the Aero-

nautical Division of Honeywell Inc., under the direction of Mr. J. C. Larson.

Acknowledgements are made to Mr. D. Lukes of S&RD for a proof of the exis'-

tence of system impulse responses, and to Mr. D. Carlson of Aero Division

for simulation of quadratic estimators.
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SECTION I

INTRODUCTION AND SUMMARY

The subject of this study is the control of a launch booster disturbed by winds.

The booster control problem is caused by wind-induced bending, rotations,

and translations. The booster is controlled by gimbaling part of its thrust,

and the control problem is to design a gimbal controller so that gimbal motions

will compensate for the undesired wind effects. A good controller would both

maintain bending moments within ultimate strength limits throughout the flight

and produce small terminal translation and rotation errors.

The objective of this study was to develop a load-relief controller design

technique. The objective was met by formulating the load-relief problem as

a stochastic minimization problem. The incident winds and corresponding

booster responses were described as random processes, and an event of

mission failure was defined. The event of failure is that one or more responses

of concern will fall outside preselected limits at burnout or during the flight.

The stochastic problem was to minimize an upper bound on the likelihood of

occurrence of this event.

The stochastic problem was formulated in a manner that permitted its solution

by application of known optimization theories. Its solution yields a linear,

finite-time controller with time-varying gains. The design procedure consists

of solving this problem and simplifying the rlesulting optimum controller.

The missile model employed as a study vehicle was NASA-MSFC's "Model

Vehicle No. 2" (Ref. 1). The missile was assumed rigid, and its deviations

from a nominal (no wind) trajectory were assumed to be linear functions of

wind and gimbal inputs. The vehicle was assumed to fly for 150 seconds,

launch to first-stage burnout, and the goal of control was to achieve final

errors within the following limits:
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• Drift l (150) l < 3000 meters

• Drift rate ] _ (150) I < 40 meters/sec

• Side force on upper stages 15(150) + 0.388 a(150) 1 < 0.0453 rad/sec

where z is drift, _. drift rate, $ attitude rate, and a angle of attack. The

constraints on the controller throughout the flight were to maintain a bending

moment of

IIb(33, t) I < 2.25 x 10 6 kilopon-meters (kp-m)

I_(t) t < 5 degrees

where Ib(33, t) is the bending moment at a fuselage station 33 meters from

the tail, and _ is the engine gimbal angle.

Several controllers were designed for this missile by the design procedure

developed in the study. The various controllers differed in the responses

sensed and fed back. It was shown in digital and analog-simulation evaluations

that these controllers were very good load-relief controllers, that they were

not parameter sensitive, that they could be successfully simplified, and that

they were generally superior to controllers designed by frozen-point methods.

The design method has several advantages over conventional, frozen-point

design techniques. The stochastic formulation incorporates in the design the

stochastic nature of the incident winds, the time-varying booster dynamics,

the finite-time nature of the control problem, the terminal translation and

rotation constraints, and the in-flight actuator and bending constraints. The

formulation does not include design constraints on parameter insensitivity

and controller simplicity; no convenient way for including them was found.

Simplification and insensitivity questions were settled by conventional, trial-

and-error simulation testing.
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The evaluations by digital and analog simulation made evident what are perhaps

the most significant advantages of the design procedure. Tim digital results

made the difficult-to-control aspects of the control problo,n readily evident.

In the "Model Vehicle No. 2" problem all response consf.raints in the early

and late portions of the flight were easily met; the contr,_l problem was to

control bending in the high dynamic pressure region by controlling angle of

attack. The analog-simulation evaluations showed that the optimum controller

could be simplified without severe performance degradation by replacing most

of the time-varying gains by constants. The simplifications took full advantage

of the digital results showing what to control and how to control it optimally.

Technical descriptions of the load-relief problem, the design procedure, and

the procedure evaluations are presented in Sections II, III, IV, and V of the

report. Section VI contains summarizing comments, conclusions, and rec-

ommendations. Most of the detail derivations and graphical results are pre-

sented in appendices.

Section II contains a derivation of the mathematical description of the wind-

missile system. The missile equations of motion are derived there, and an

apparent anomaly in the bending moment equation is discussed in some detail.

The incident wind is assumed Gaussian, and it is expressed as the sum of a

deterministic (mean) time function and the output of a finite-order, time-

varying linear filter driven by white noise. The missile and wind filter deri-

vations permit describing the wind-missile system by vector differential

equations of the form

_(t) = F(t) x(t) + Gl(t) u(t) + G2(0 _(t) + G3(t) _l(t)

r(t) = Hl(t) x(t) + Dl(t) u(t) + D2(t) _w(t)
(i.i)

m(t) = H2(t) x(t) + _2(t) ,



-4-

where

r(t)

re(t)

Vc0(t)

u(t)

lql(t)

_2 (t)

x(t)

= missile response deviations from ideal (no-wind) trajectory

= measured responses (sensor outputs)

= mean incident wind

= control input to gimbal actuator

= Gaussian white noise input to wind filter

= Gaussian white message (sensor) noise

= state vector.

The reader interested only in the stochastic formulation can skip Section II

and not miss any essential notions.

The statement and solution of the stochastic formulation of the load-relief

problem are presented in Section III. The mathematics are based on the

following six results:

Frequency of Occurrence (Rice, Ref. 2) - Let r(t) be a (one-

dimensional) Gaussian, zero-mean, stationary random process

of the parameter t (time). Let y be a positive constant, and

let a. be the event that

Ir(t)I = Y

d
Ir(t)l > 0d-T

[_. is the event that Ir(t)I intersects _'with positive slope;

i.e., it is the event that Ir(t)lwill exceed _,]. Then. accord-

ing to Rice's derivation, the average number of occasions

E[N(et)] that the event _ occurs in [O, _ is
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T 1 o_
E[N(a)] = _ Or e dt

O

dr

where al. and a r are the standard deviations of _-[ and r

re spe ctive ly.

This result was extended in the study to include non-zero mean,

non-stationary random processes. In the formulation r(t) and

'_ represented the bending moment and its limit, and the gimbal

angle and its limit.

Upper-Bound J'_ - Let J be the sum

m n

i=l i=m+l

(i. 2)

where P(_i ) is the likelihood that the i th

terminal limit

response exceeds its

I ri(T)l > _'i

.th
and E[N(a.i) ] is the expected number of occasions that the j

response exceeds its limit Vj in the course of the booster flight.

Assuming there are m responses whose terminal behavior is to

be constrained and n-m responses whose in-flight behavior is to

be constrained, it is shown that J is an upper bound on the

likelihood that one or more responses of interest exceeds its

limit:

J'_ > (the likelihood of mission failure)
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No analytical expression for the likelihood of mission failure is

known. The above result is significant in that an analytical ex-
g..

pression for the upper-bound J can be written if the responses

r(t) are Gaussian. The expression for J* is a functional of first

and second response moments (means and covariances), and it

leads to the following assertion.

Quadratic Equivalence - The linear controller minimizing J*

also minimizes a quadratic functional of the first and second

response moments.

The restriction of linear control assures that the responses r(t)

are Gaussian and the above analytical expression for the upper-

bound J is valid. The equivalent quadratic functional is derived

by expanding J* in a Taylorls series and examining the coeffi-

cients of its first variation.

The thought behind e'stablishing this equivalence is: Direct mini-

mization of J* is difficult; but, since J* is monotone in the re-

sponse moments in the neighborhood of the optimum, why not

minimize the moments themselves? This can be easily done with

the three results for quadratic problems given below.

Estimation (Kalman, Ref. 3, 4), (Bryson, Ref. 5) - Given the

system (1. 1}, find the conditional state expectation

E{x(t) Ira(o, t), u(o,Q'}

This is the expected value of the state given present and past out-

put measurements re(t) and past control inputs u(t). The authors

referenced have completely resolved this problem.
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Deterministic Control (Kalman, Ref. 6) - Given the system (1. 1)

where all inputs are zero (01 = 02 = V = 0), find the control input

u(t) which minimizes the response quadratic

t
J_'* : r(T)' Q(T) r(T) + / r(t)' Q(t) r(t) dt

0

(1.3)

Kalman solved this problem, derived the existence and uniqueness

conditions, and showed that the control u(t) was of the form

u(t) = K(t) x(t)

where the gains K(t) could be derived from the backwards solution

of a matrix Riccati equation.

This result was modified in the study to include the case where

the deterministic input Vu(t) was non-zero.

Separability (Tou, Ref. 7) - Given the system {1.1) where the

deterministic input V is zero, the control u(t) minimizing the

u j_,,expected value of the quadratic is

u(t) = K(t) E (x(t) Ira(o,t), u(o, t)]

where K(t) is the solution to the deterministic problem.

This result permits separation of the stochastic quadratic problem

into an estimation problem and a deterministic control problem.

Tou proved this result for systems described by difference equa-

tions; it was assumed true in the study for systems described by

diffe rential equations.
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These results were combined in the study to provide a general solution to the
minimization of a quadratic functional of the response moments.

These six results permitted reducing the load-relief problem to a problem of

choosing quadratic weights [the Q(t) coefficients in Equation (1.3)] . An iter-

ation procedure for making these choices was devised and successfully run.

The procedure, based on the quadratic equivalence result, involved iterating

until initially chosen weights were equal to the coefficients of the first varia-

tion of the J produced by the quadratic optimum controller.

Section IV contains the results of digital evaluations of three controllers de-

signed by the methods of Section III. Section V contains analog evaluations of

those controllers and competitive minimax and conventional controllers. The

main results of these evaluations were noted above.

The main conclusion reached in Section VI is that the stochastic problem

treated in Section III is a valuable design tool. The formulation handles high-

order system representations, it treats many aspects of the design problem,

and it produces a very good load-relief controller. Recommendations for

future study mentioned in Section VI include treating higher-order system

representations, adding realistic sensing, including the nominal pitch program

in the formulation, and examining the sensitivity of controller performance

to Gaussianess and wind-force assumptions.
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SECTION II

MODELS

The differential equations describing the missile, the wind random process,

and the wind loads on the missile are presented in this section.

MISSILE MODEL

The missile employed as a study vehicle was NASA-MSFC's "Model Vehicle

No. 2". The vehicle was assumed to be rigid, and fuel-slosh and engine-

inertia effects were ignored. Control of only one axis was considered.

The missile response-perturbation equations were obtained (by NASA) by writ-

ing the missile equations in terms of a coordinate system moving along the

nominal (no-wind) vehicle trajectory. These equations were then expanded in

Taylor's series about the nominal trajectory, and the higher-order and insig-

nificant first-order terms were dropped.

The configuration is shown in Figure 2-1.

tion equations are:

x N

• Drift: mY = (F-X)_ + tt/3 +{

4

The linearized response perturba-

(2.1)

x N

• Pitch: Ixx$ = -RXcg _ + f
O

d,r (x - x ) a dx
da cg

(2.2)

where:
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\
\

\
\ z

F/2

Figure 2-1. Missile Model Configuration
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m

I
XX

X

R

Z

X
cg

x N

d_"

= vehicle mass

= pitch moment of inertia

ffidrag

= controlled thrust

= driftOrthOgonal to nominal trajectory

= attitude deviation from the nominal trajectory

= distance from tail to booster center of gravity

= length of booster, tail to nose

= side force on missile per unit length per unit angle-of-attack

v(x,t) - _.(t) - [ x - Xcg(t) l _(t)
a(x, t) = _(t) +

v(t)
(2.3)

v_o(x,t)

= angle of attack at a station x meters from the vehicle tail

= wind component orthogonal to missile at a station x meters

from the tail

V(t) = vehicle nominal velocity

_(t) = gimbal angle

The derivation of the per-unit-side-load term

section on wind loads.

_- is discussed in the sub-

The bending moment at a point x° meters from the vehicle tail can be obtained

from the equations of motion for a rear section of the vehicle xo meters long.

These are:



- 12-

Drift:

X
O

m T [_ + (XT-Xcg) _] = R_ +F s + f

O

(2.4)

Pitch: I T _ = -RXT_ +

X o

f
O

d7 (X_XT) a dx + Ibda + F (Xo-X T)S
(2.5)

where:

m T

I T

x T

F
S

I b

= mass of section

= pitch moment of inertia of section

= center of gravity of section measured from the tail

= shear force at x °

= bending moment at x
O

The configuration of the tail section is shown in Figure 2-2.

By defining

3' 1
IT +(x - xT) (Xcg- xT) m T

][XX

(2.6)

m T

- -- - x 7172 = (x x T) m cg
(2.7)

solving for the bending moment Ib produces

x Nx° d_"

Ib=(Xo'72) a_+Jo --cla(Xo "x) adX+/o

d_"
(Vlx - ,y2)ada (2.8)
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REF

/

/

/

/
/

/
/

/
/

Fs

F/2

X

Z

Figure 2-2. Tail Section Configuration
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By defining

xN

 --fo (2.9)

N_cp = N

1
_O

cl_dt_(x - Xcg) dx

I

MB --R [x o- v2]

Xo
/ •

=;o
X

xN
.)

O

x N

d'r (x° . x) (x - Xcg) dx + /o d_'d_ d"_ (_1 x - _'2) dx

+ XN d_'

dad_ (x ° . x) dx .(o da_ (_1 x - _2 ) dx

_z (x 2
da - Xcg) dx

the equations reduce to

m_ -
xN

R_ +N(_ - _) - V
._O

V _a d_'
"V' d-"adx +(F - X) _b

Ixx_ = XcgRfl +N_cp (_ V) " _ V

x N
r V

dr {x
i V da " - Xcg)

dx
J
O

_. v
Ib= M/3 _]+M '(_ "V¢) - _ + u) d}"

a V dot [(x-x o) u_l (x-x o)

+TlX- _2]dx

(2.10)
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The gimbal actuator equation assumed was

= - 14.6 8 +14.6u (2.11)

where u = control input.

{ It will be shown in a later section that the results are independent of the con-

stants in this equation. Any first-order actuator equation

= ale + a2u

can be substituted for the above. )

An expression for I b' the b'ending-moment rate, is required in the evaluation

of the expected number of occasions of exceeding the bending limit. By ignor-

ing -_t V(t) and defining

M' __
__ i _ _..._a R RXcg

R E M_ - 1'4.6 M E' V m + Ixx
(2. _2)

R_ -- M. ' -M

R_ = M a

, N Me N_cp
m-"V --V- I

XX

• mV-I I V z - _-
XX

the bending-moment rate equation is

i b-- RE_ +R_(_ -V) +14.6 M/]

XN v

+ 3,1x-3, 2 ] dx - r ¢0 e,d..._V da
Jo

I

M
+

['-_--v

NX

d _ vw dv

+d-i J V da
O

_x_Vx (X-Xcg) ]

[(X-Xo)U_l(x-Xo)

dx (2.13)
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In the "Model Vehicle No. 2" data package these equations were simplified

by assuming that local angle-of-attack effects along the fuselage could be ig-

nored. This amounts to replacing

x N

_a adx

V -Z
tO

by N(_ + -V--}, (2.14)

N d_- (X_Xcg) v-zC/ dx by N_cp { ¢ + _..R_._)V

and

X o x 0

I dT V-_" fO dTa dx by (¢ + C°V ) --da dx,

O

X . X O

;od_" vtO d'r (X_XT) dx"_ (x-x T)(2 dxby (¢ + _)

O O

This ignores the $ contribution to angle to attack and is equivalent to assum-

ing that the wind over the entire vehicle length is the same as the wind at the

center of gravity. The above equations were reduced to

v -z

i= RI3 +F- X ¢ +___N(¢ + tO ) (2.15)
m m m V

-x R v -£

= Cgm _+N_,CPm (_ +-_)

v -_

, tO
Ib= M s (¢ + _) +M/3
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, M '
= , _ R ,

Ib (IVI_ - 14.6M/3 V _) /3+ 14.6 M E u

v-z M ' M '

+(!QI '- M ' N to ----g-_b +-_-_a -m-V) v to

Th_ various _oeffi_ient_ in these _quutionm are graphed in Appendix A,

Figures A-1 through A-28.

The Ib equation had to be approximated with a simpler equation for the analy-

ses. The reasoning and approximations employed are discussed in the sub-

section on wind loads.

WIND MODEL

Calculation of first and second response moments (means and covariances) re-

quires knowledge of the mean s and correlations of the incident wind vto(t).

Means and correlations of horizontal winds as a function of altitude have been

published (Vaughan, Ref. 8). Convenient use of that data requires the con-

struction of a "wind filter". The construction of the filter employed in the study

is discussed in this subsection.

Data

Vaughan'.s wind data were obtained by tracking the vertical ascent of bal-

loons. Horizontal displacement and time of observation were recorded at

altitude intervals of 1 kilometer. The displacement increments divided by the

time increments gave average horizontal wind-velocities over each interval.

The velocity data from various ascents were then averaged and correlated

for various geographic locations and months of the year. The published

averages for Patrick Air Force Base for the month of March were employed

in the study• The averages were given at discrete altitudes h i , i = 0 .... 30:
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h. = i kilometer s altitude
1

The averages included:

vNS (hi), the mean north-south wind velocity

VEM (hi), the mean east-west wind velocity

aNS (h), the standard deviation of north-south wind velocity1

(_EW (hi), the standard deviation of east-west wind velocity

PNS-EW (hi)' the correlation coefficient of north-south and east-west winds

PNS (h.,1 hj), the correlation coefficient of north-south winds at each altitude

pair

PEW (hi' hj), the correlation coefficient of east-west winds at each altitute

pair

The data also included the number of observations included in each average.

The data did not include correlations of east-west and north-south winds at all

altitude pairs. Data to 30 kilometers altitude were presented.

Since the data were based on observations made at 1-kilometer altitude inter-

vals, it does not include high (spatial) frequency wind-velocity variations. To

be precise, the Vaughan data cannot be interpolated between the 1-kilometer

intervals without assuming that the highest spatial frequency component in the

wind velocity is less than 1/2 cycle per kilometer. There is no basis for such

an assumption, and the inherent inaccuracies of the 1-kilometer sampling in-

tervals must be tolerated.
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Assumptions

Use of this data in the booster problem requires assumptions of statistical

regularity and time constancy, and construction of a vertical wind component.

The statistical-regularity assumption is that if the balloon experiments were

repeated in the future, nearly the same averages would result. This is a

necessary and reasonable assumption. Without it, it would be impossible

to infer anything about future winds.

The time constancy assumption is that, over a time interval corresponding

to the ascent time of a balloon, the wind at a point in space is nearly con-

stant. This assumption has been experimentally verified by comparing the

winds calculated from balloons released at one-hour intervals (Lenhard, et

al, Ref. 9). A booster rises much faster than a balloon, and the assumption

permits expressing the winds encountered by the booster as functions of

time rather than altitude.

The veritical wind construction is required because a booster does not always

fly vertically, and calculation of response moments therefore requires knowl-

edge of the horizontal and vertical distributions of both horizontal and vertical

winds. The only wind data available are the vertical distributions of horizon-

tal winds. To use this data, it is assumed that the wind component orthogonal

to the booster fuselage at a point in space is equal to the horizontal component

of the wind at that point as determined from the Vaughan data.

There is no data to test this assumption, but it is felt that the response mo-

ments calculated with it will not differ significantly from those that would be

obtained if all of the various distributions were known and were included in

the moment formulae.
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Filter

The Vaughan data as given is inconveniently expressed for the calculation of

response moments and for the design of a booster controller. The most

efficient method for obtaining response moments involves constructing a linear

filter, white-noise driven, whose output statistics approximate the given

wind statistics° Expressing the data in the form of a filter is also essential

to the optimization method used to design the control system.

The problem of constructing a linear filter with given output moments has been

solved for stationary random processes and for some processes derived from

stationary processes. It has not been solved for general nonstationary pro-

cesses, and examination of Vaughan's data shows that the wind random pro-

cess is not stationary.

Lacking a general approach to filter construction, the only recourse in the

study was to assume a form for the wind filter, compute its response moments,

and adjust filter parameters for a best fit of the given data. There was no

basis for selecting one filter form over another other than quality of fit, and

filter form had to be determined on a trial and error basis.

The general form of the filters considered is shown in Figure 2-3.

west and north-south wind components were taken to be

YEw(h) =vEW (h) + _EW (h) Wl(h)

vNs(h) = :¢Ns(h) + (_Ns(h) [ k(h)_l(h) +Vl-k(h) 2 w2(h) ]

The east-

where h is altitude, and _i (h) and k_2 (h) are the unity standard-deviation

outputs of stationary (in altitude) linear filters driven by independent white

noise sources; k(h) is the correlation coefficient PEW_Ns(h). This choice

of a general filter form automatically ensures the proper output means
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INDEPENDENT
WHITE NCISE

SCURCES

_2 _)

EW(_) +_EW (_)

MULTIPLIER

v EW (h)

r MULTIPLIER

v NS (h)

Figure 2-3. Wind Filter

and east-west •

(vNS (h) _ YEw(h)i2 )1.12 = aNs(h)

north-south interlevel correlation coefficients

E ([yEw<h,- vEw,h>][VNS'h>
aEW (h) aNs(h)

vNs(h)! }= k(h) = PEw_Ns(h)

The f(h) impulse responses were chosen to fit the given interlevel correlation

coefficients. Since the interlevel correlations of east-west • north-south

winds were not know, the f(h) were chosen to fit only the east-west • east-

west interlevel correlations and the north-south • north-south interlevel

correlations.

The east-west • east-west and north-south • north-south covariances to be

approximated were
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hj) aEw(h i) o

ONs(hi ,

k(hi )2 (i -k(hj

Ew(hj )

hi) oNs(h i) oNs(h j)

Two correlation functions were tried, an exponential function

'),
and an exponential-cosine function

= (cos a 2 lh i - h.j.l + a 3 sin a 2 lh i - h.j I) exp (-a 1 lhi - h.I)3

The criterion for quality-of-fit employed was the sum over all data points of

the squares of the differences between the actual and computed covariances,

weighted by the number of observations of each data point. The "cost" of a

poor fit was then

29 3O

J -_, _ Cij min (Ni, Nj)

i=0 j - i+l
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where N.I = the number of observations of wind velocities at altitude hi, and

_Ns(hi )2 oNS(hj)2

The parameters L in the exponential autocorrelation and al, a 2, a 3 in the

exponential-cosine autocorrelation were chosen to minimize J.

The exponential autocorrelation was tried first and discarded, as it gave too

poor a fit. The exponential-cosine coefficients al, a 2, a 3 were determined

with a digital computer by minimizing J with a standard gradient-minimization

procedure• The procedure is described in Appendix B.

The gradient search for the minimizing coefficients was terminated when

successive iterations produced values agreeing to two significant digits.

values determined were

a 1 : 0, 95

a 2 : 0.735

a 3 = -0.91

-4 -1
• 10 meters

• 10 -4 meters -1

• i0 -8

The

Plots of the original east-west covariances, the computed east-west covariances,

and the corresponding number of data observations for four reference altitudes

are presented in Figures 2-4 through 2-7. (These are the correlations of the

wind at the reference altitude and the abscissa altitudes• ) It is seen that the
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Figure 2-4

Computed and Given Wind Covariance
versus Altitude - 0"kin Reference
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Figure 2- 6
Computed and Given Wind Covariance
versus Altitude - 20-kin Reference
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given covariance data is somewhat scattershot, especially where the covariances
are based on few observations. The exponential-cosine filter approximates the

data fairly wello

It was felt that attempts to better fit the given covarianees with a higher-order

stationary filter, or with any other filter, would not be worthwhile. The

original data was too irregular, and the exponential-cosine filter was probably

as close to reality as the given data was.

The last task in constructing the wind filter was to find a filter with the given

exponential-cosine output autocorrelation. This was straightforward. The

details of the derivation are presented in Appendix B. The resul_ing impulse

response f(h) of Figure 2-3 is

1

f(h) -_al- a2a3 [( 2}'2" -alha2 a 0 -al )2 + a 2 e sin (a 2 h + @) u_1(h)]

where

a 0

: _(al+ a2a 3) (al 2 + a22)

a I - a2a 3

= tan

As shown in Appendix B, the filter f(h) is equivalent to a second-order system

described by the vector differential equations

_!
dh [ci]+ _(h)

c2



where _(h) is white noise

h I)

and

c 1 = _2(a 1 - a2a3)

c 2 = _2(a 1 + a2a 3) (a12 + a2 2) - 2alc 1

c 3 = 1

c 4 = 2a I

2 2
c 5 = (a 1 + a 2 )

Since the Vaughan data extended only to 30-kilometer altitude and the booster flies

to twice that altitude, it was necessary to arbitrarily extend the Vaughan mean

wind and wind standard deviations to 60-kilometer. The two moments were

smoothed to zero-burnout values. The resulting east-west mean and standard

deviations are shown in Appendix A.

The above filter is expressed in terms of altitude h

t

h(t) =f f_(t)dt

0
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where h(t) is the vertical component of booster velocity. The booster dif-

ferential equations are expressed in terms of time rather than altitude. It

is shown in Appendix B that the above filter equations can be rewritten as

d__
dt

x_t)! i I l cl= + (t)

where

/°E (t 1) "n(t 2) = 5(t 2 - t 1)

This completes the discussion of the wind model°

WIND LOADS

There is an anomaly in the bending-moment-rate expression previously derived.

A modified bending-moment-rate expression was substituted for it in the analyses,

and a start towards resolving the anomly was made.

The Anomaly

The bending-moment-rate expression previously developed was

• = ' - 14 5 ' _ '
Ib • _ + 14o u -

I%I M 'N v -7. M '
/ _ Ot "

+ _ _ + + _V
mV V
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Substituting the wind filter equations

v = X> + a to
tO tO v

tO

__ • (_ _-= v + a tO + g c x + qhc O)vtO tO v v 3 1

into this expression produces

M i

ib (1_it3, , c_ R ,= - 14.6Mj3 V m ')13 + 14.6M/3 u

M i

o(

V

N _- z/ M
,, I 0:' "-

+ M m + V vOt tO

+ ' M ')

M i

+ _ c._
V V I

o M' 7 M'
N via + _ _ / _ hc3x

mV V V vtOj V vtO

Hence, with that wind filter, both the wind shear _ and the bending-moment-
tOI

rate Ib contain a white noise term _(t). Since the standard deviation of white

noise is infinite, the standard deviations of both the wind-shear and the bending-

moment-rate are infinite. This is nonsensical.

The anomaly is due to two approximations. Wind shear in nature does not

have an infinite standard deviation, and, although the above wind filter approx-

imates the wind fairly well, it poorly approximates wind shear.

The second approximatio,_ is the implied assumption that the wind is constant

over vehicle length. This approximation, a reasonable one when calculating
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attitudes and drifts, ignores the averaging of the instantaneous winds over the

vehicle length° That is, the side load due to wind is better approximated by

xN

f
O

dT vw

da V
dx

then by

v

N'
V

The effect of this approximation is to make the force and moment expressions

unrealistically sensitive to instantaneous wind-amplitude variations.

The problem caused by these approximations could be defined away by construc-

ting a wind filter with the property that the computed wind shear did not contain

white noise. This is an unsatisfactory solution. There is no wind shear data

with which to construct such a model, and the form of the wind filter would have

to be chosen arbitrarily. If the performance of the controlled booster were

sensitive to wind shear, it would be sensitive to arbitrarily chosen parameters,

and the calculated performance measures would have little meaning.

The issue, then, is whether or not booster performance is sensitive to wind shear.

The only way to test this would be to replace the constant wind approximations

with the more accurate integral expressions. Various wind filter forms, with

approximately the same wind statistics but widely differing wind shear statistics,

could then be employed as wind generators. By comparing the results obtained

with the various filters we could determine, within our ability to calculate wind

forces, whether or not booster performance was sensitive to wind shear.

Unfortunately, time limitations forced us to choose between resolving this ques-

tion and studying other issues pertinent to the optimum load-relief Controller.

Development of a controller design technique was considered to be the principal
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purpose of the contract. It was decided therefore to emphasize the latter, and

the question of whether or not booster performance is sensitive to wind shears
was not resolved.

Modification of the Bending-Moment Rate Expression

It was necessary to modify the above bending-moment rate expression to obtain

a vehicle model for study of the controller design technique. Three gross changes

were made. The angle-of-attack coefficient

(_/I ' - M / N )

and the w (wind state) coefficient

(_ I

(_¢I - M _--_--N v_ M .t t _ Cl
_ mV'V + V v

tO

both of which exhibited severe variations in the high-dynamic-pressure portion

of the flight, were arbitrarily smoothed. The smoothed coefficients are shown

in Figure 2-8 and 2-9. In addition, the white noise contribution to the bending-

moment rate was set to zero.

The bending-moment-rate expression is used to evaluate the expected number

of occasions that the bending-moment limit is exceeded in the flight. The above

modifications were made to get a reasonably-behaved expectations and the corn-

puted expectations are therefore in error. The controller was chosen, in part,

to minimize the expectation, and the computed controller-gains probably differ

from what would result if more accurate wind-force expressions were employed°

The simulation tests, fortunately_ were not affected by the modifications, as

bending-moment responses could be obtained without calculating bending-moment

rates.
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More Accurate Expressions

A start towards resolving the wind-shear question was made. It was assun_{,i

that an optimal controller would not be sensitive to plant-parameter vari;:Iti,,_<_=.

This assumption, which requires verification, permits introducing approxix_,:_

tions that simplify the plant model.

The existence of a side-force-density derivative was assumed. Its value was

estimated by simple aerodyanmic theories, and the side-force density

( dr
(x,t) = side force at body station x per-unit length per unit angle-of-attack)

and the pitching moment and bending moment densities

d'[

(X - Xcg) t) (pitching moment)

(x - Xo)U i (x - xO) + 71 x -72 -a-_-(x,t) (bending moment)

were calculated. The integrals

x
n

/v V-
0

(density)dx

were then approximated by finite-order filters, and a computer program to cal-

culate the optimum controller was written.

aT

The derivation of the _ density is presented in Appendix C.



- 34 -

dT

The _ density computed with the aerodynamic theories presented there did

not, when integrated, agree exactly with the N, N6cp, M ' data presented in

the ':Model Vehicle No. 2" data package. To enforce agreement, the aerodynamic

density was multiplied by the ratios of the given data over the derived data.
dTO

Letting--d-_-a be the aerodynamic density, the resulting drift density was

dTl dT [ N 1_ od_ d_ xn

Jo o dx
d_

the pitching density was

dT2 - (x - Xcg) dT° I

(x - Xcg) d_ _k

N£cp
x-

n dT

f o(x - Xcg) _ dx

O

]

and the bending moment density was

[ x o) ] dT---_2=(x - u 1 (x - x ) + 7 1 x -7 2 dc_- 0

M !

x_

n

J f dTol(x - x o) u 1 (x - x o) + T 1 x -72) --_---]
0

(x - x o) u_ 1 (

dx

X - X O)

dT

I °+71 x-72 d_



- 35 -

Plots of the side force, pitching moment, and bending moment due to a step

angle-of-attack are presented in Figures 2-10, 2-11 and 2-12. It is evident that

the major portions of the forces and moments are due to the side loads on the

booster tail fins, and that the tail-fin effects are rather abrupt. This brought

up the question of developing a computational!y feasible approximation to the

above densities°

This question was not completely resolved. The most accurate formulations,

involving a sampled delay line of xn--g- seconds, were rejected as requiring too

large an increase of the order of the difference equations describing the system.

Approximation of the _ weighting function with simpler functions was rejected as

inaccurate, as the_ function contains "spikes '_ at the various frustrums and the

tail fins.

After considerable casting about, we concluded that we would be unable to

generate a computationally feasible° accurate approximation of the wind loads

in the time available° We decided to settle for- less -- for an inaccurate formu-

lation we could defend as being superior, to the expressions presently employed.

The appr_oximation employed is based on the following rationale:

O The wind undoubtedly ha_: lower high-frequency components than

the above wind model would indicate:

white-_

noise presentmodelwind _' low pass _wind

Since the wind data was based on lO00-meter samples, it does not cc,n-

tain small-wavelength components, and there is no way of assessing

what the high-.frequency spectra should be,
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Figure 2-10
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Forces versus Vehicle Length, r
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Q The effect of the above low-pass would be to smooth the wind and

thereby reduce the emphasis of the wind loads on the "spikes '_ of

the _ load density. Again, how much is not known.

The time required to pass a point in space is somewhat less than

the time constants of the vehicle drift and pitch responses. The

wind load integrals

X
n

j dt
v0 (x,t) _ (x,t) dx

X
n

I
0

dt
v) (x,t) _ (x,t) (x - Xcg) dx

dt dt

can therefore be safely approximated by replacing_-dand_- _ (x - Xcg)

by smooth functions of somewhat the same shape, providing the integrals

of these functions over vehicle length have the values N and Ntcp.

The contributions of v0 to the bending-moment and bending-moment-

rate equations are employed only to estimate these quantities and are

not used as force terms. Smoother functions approximating the inte-

grands that are larger at all locations than the present integrands would

serve as well for this purpose and could be considered "worst-case"

approximations.

The approximation employed, based on this rationale, involved the impuIse

responses of a first-order filter and a second-order Pade' -type filter. Let

r = x n - y (distance measured from the nose), and let hl(r) and h2(t) be the

inverse transforms
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hi(r) = 2_--_
-j_

+_

1 J esr
h2(r) = 2_j

sr i as

5.1 s + i

-_ig 2 s 3 2

as

The approximations replaced

d-!t (r, t) byiN(t) 1(t)hl(r)
da

dt (r, t) byN(t)

(xn - r - Xcg) -KS

+ a2(t) h2(r) ]

[a3(t) hl(r) - a4(t) h2(r) 1

+ x +_i (Xn-r) "_(z)_ {r,t) by

(x - x n - r) u_ 1 (r - x n

NI a' la5(t) hl(r) + a6(t) h2(r) ]

where al(t), ' ° " a6(t) are slowly varying functions of time. TheX 1' X2' a(t)

• ientS were chosen to reasonably approximate the distribution of loads,
coefhC _ o were chosen to be

and:gl, X 2, a 1, a2' =5' _6

xl = 8ol3

X2 = iO0

al(t) = 112

a2(t ) = 112
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t
a5tt) = 1/3 + 2/3 15o

t
a6(t) = 2/3 - 1/3 150

The a3, a 4 coefficients were chosen to match the peak and final step angle-of-

attack responses of the filters and the pitching moment

a3(t) - a4(t) = 4cp(t) (finalvalue)

a3(t) - O, 3a4(t)

MAX If (xn
Y o

]
r - Xcg) -_ (r,t) dr

N(t)

The filter step responses and their approximations to the drift, pitch, and

bending responses are shown in Figure 2-13.

In state vector notation, the impulse responses correspond to the equations

v it)
• V xl(t ) +
xl(t) = - x--_ x 1

x2(t) ]

x3(t)

-4V -6V

X 2 X: 2

V
0

X 2

x2(t) I

I
|

xa(t) I

+

-5

X. 2

1

X 2

v(t)

where vt0(t) is the wind at the vehicle nose• The angle-of-attack loads are then:

Side force:

(__z) N _ N_cp+N(a
v - v-- iXl + a2x 2)
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Pitch moment:

• e

(4 -_)NLcp - _T_ + N(a3x I - a4x2)

Bending moment:

' i
(4 _Z)v M_' v M_'(a5x I + a6x2)

The angle-of-attack contribution to the bending-moment rate, after dropping v,

a5, a 6 terms as negligible, is

(_ ____z)M ' + (4----z) 1VI _ _ M £1(/i' (a5x I +v o_ v o_ - _ _ - v _ a6:':2)

v 5v
+ M ' -v _¢o a (-4v 6v ¢o

c_ a5(_" 1 Xl +y_l) + M ' x 2 x 3 )6 X 2 X 2 X 2

STATE EQUA TIONS

The quadratic theory discussed in Section III requires that the vehicle and

wind-filter equations be written as first-order vector differential equations

of the form

x(t) = F(t) x(t) + Gl(t) u(t) + G2(t) _(t) + G3(t) _- (t)tO

r(t) = Hl(t) x(t) + Dl(t) u(t) + D2(t) V (t)

The above vehicle equations are expressed in this form in Appendix D. Both
d_

the constant-wind and the _ approximation cases are presented.



- 42 -

SECTION III

THE STOCHASTIC PROBLEM

The definition and solution of the stochastic formulation of the load-relief

problem are presented in this section. The formulation of the load-relief

problem as a stochastic minimization problem is discussed in the first sub-

section, and the equivalent quadratic method for its solution is presented in
the second. The last subsection contains a discussion of the form of the so-

lution and the equations which define it.

FORMULATION

The load-relief problem is essentially a problem of keeping missile responses

within prescribed limits. Some of these constraints, such as stress limits
and actuator-travel limits, must be met throughout the booster flight. Others,

such as translation-error limits, need be met only at the terminal (burnout)

time.

The problem is seen both as a statistics problem and an optimization problem.
It is a statistics problem because the winds to be encountered on a particular

flight will not be known at the time the load-relief controller is designed.
However, the set of possibly-occurring winds can be described as a random

process, and the corresponding missile responses can therefore be described
as random processes. Meaningful statistical measures of controller quality
are standard deviations of terminal-response, mean miss distance, and peak-

stress standard deviations. Perhaps the most appealing of such measures is

the percentage of possibly-occurring winds for which all of the response con-
straints would be met. Maximization of this measure is the basis of the

formulation below.
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The design problem is an optimization problem; choosing any quality measure

implies that the design procedure should maximize (or minimize) it.

These notions are the motives for formulating the load-relief problem as a

stochastic optimization problem, The particular formulation described below

was chosen because it could be solved.

Mission Success

The above percentage-of-winds for which the response constraints would be

met can be defined in the following manner:

Let t -- 0 be the time of missile lift-off and t = T be the booster burnout time.

Let ri(t), i = 1.... m, be the deviations from ideal (no-wind) values of the m

booster responses whose behaviors are to be constrained at the burnout time T.

Let ri(t), i = m+l .... n, be the deviations from ideal of the n-m booster

responses whose excursions are to be constrained throughout the flight. Let

7i" i= 1.... n, be finite positive constants and let ai, i= 1.... m, denote the

event

Iri(T) I < _(i

and a. the event
1

Iri(T)I

The events at, i= 1.... m, are the events that the m responses ri(t),

i= I.... m, fall within their limits at burnout.

(3.1)

(3.2)

Let bi(J) denote the event that the two conditions

Iri(t) l = _i

dt Iri(t)l > 0

(3.3)
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are met exactly j times in the interval [0, T] o This is the event that response

ri(t) exceeds its bound 7i exactly j times in the course of the flight.

The idea of controlling the booster is to have the events al,

bm+ 1, (0) .... bn(0) occur° Therefore, define

The event of 1

mission success I

a 2 .... a m ,

The event that all of the events lfa 1, a 2 .... a m , bin+l(0) .... bn(0) occur

Mission success is then the event that all tprminal and in-flight constraints

are met°

(3.4)

The above definitions apply to a single missile flight° Restated, they apply

to the missile's responses to a particular wind input° Given a wind input,

the flight is a success if the vehicle's responses to that input fall within

the constraints°

The percentage of possibly-occurring winds for which mission success occurs

is the percentage for which all of the events a I .... bn(O) occur. This is by

definition the joint probability

Pin I .... bn(0) ]

Defining mission failure to be the event that one or more of the events ai'

or the events bi(J), j > 0, occur, the probability of mission failure is the

difference J

(3.5)

J = 1 - Pin 1 .... bn(0)]o (3.6)

Maximization of Pin 1.... b n(0)] , or what is the same thing, minimization of

the failure-likelihood J, is a meaningful basis for a control design procedure.
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An Upper Bound for the Likelihood of Failure

Unfortunately no analytical expression for the likelihood of mission success

is known, even for Gaussian processes. However, a useful upper bound on

the failure-likelihood J can be constructed:

Let E _qi_ be the expected number of occasions that the response ri(t)

exceeds its limit in the interval [0, T]. Then,

j=O

where P [bi(j) ] is thp probability that event bi(j) occurs. Let P(ai ) be the

probability that event a i occurs (a i does not occur), and let J* be the sum

m n

Z P,v+Z:
i= 1 i-- m+'l

(3.7)

(3.8)

It is shown in Appendix E that, for general (not necessarily Gaussian) random

processes, J'-'.' satisfies

J* _ J (3.9)

That is, J;:-" is an upper bound for J. If J-* can be made sufficiently small

by proper choice of a controller, J will be smaller, and the controller will

be a " good" controller. In what follows, J".' is regarded as the " cost of

control", and the goal of control will be minimization of this cost.

Analytical expressions for the probabilities P(a i) and the expectations E INi>

are derived in Appendix E under the assumption that the responses ri(t} are

non-stationary Gaussian processes. Expressions for them for general {non-

Gaussian) processes are not known.
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Basic Assumptions

It is known (Davenport and Root, Ref. 10) that linear transformations of

Gaussian processes are Gaussian processes. Therefore if it is assumed

that (a) the incident wind is Gaussian, (b) the missile's response perturbations

are linear transformations of wind and gimbal inputs, and (c) the restriction

that the gimbal controller is a linear controller is imposed, the responses

ri(t) will be Gaussian processes.

These assumptions are made in this formulation to permit writing an analytical

expression for J*.

State Equations

The Gaussianess and linearity assumptions above are fundamental to the

description of the missile's responses as random processes. Convenient

minimization of J_'," requires several additional assumptions. They are

convenient in that they permit applying Kalman's results, via the quadratic

equivalence described in the next subsection, to the J* minimization.

It is assumed that the missile's response perturbations can be accurately

approximated by finite-order vector equations of the form

@

Xv(t } = Fv(t) x(t} + Glv(t) u(t) + G2v(t) vc0(t)

rv(t) = Hv(t) x(t) + Dlv(t) u(t) + D2v(t) vw(t)

(3.10)

where the coefficients in the matrices F v, Glv, G2v, Hlv, Dlv, D2v are

known functions of time° In this notation
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Xv(t) = vehicle state vector (z, z, _, ¢, 8)

rv(t) = vector of responses to be controlled

u(t) = control input to gimbal actuator

v (t) = wind input

It is further assumed that the vehicle responses sensed (by accelerometers,

gyros, etc.) can be approximated by the sums

my(t) = H2v(t) x(t) + D3v(t) vt0(t) + _]2(t) (3.11)

where the coefficients of H2v and D3v are known, and

mv(t) = vector of sensed responses

T]2(t) = Gaussian white sensor noise

E [T]2(t) _2(tl)' ] = W2{t) 5{t 1 -t) (3.12)

It is assumed in addition that the wind input vc0(t) can be approximated by the

sum of a deterministic (mean) time function and the output of a finite-order

linear filter driven by white noise

v_o,{,t) = v(t) + Hoe{t) xto(t)

xe(t) = F(t) x o(t) + Gw(t) rll{t)

(3.13)

where the coefficients of H w, F¢0, Go0 are known time functions and

v_0(t) = E[vt0(t)] = mean wind

x (t) = state of wind filter
_O

_l(t) = Gaussian white noise input to the wind filter
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E[ql,',t) Rl(tl)'] = Wl(t) 5{t I -t). (3. 14)

These assumptions werf__ implied in the development of the model equations

presented in Section _1_

The controller determining u lt) was required to be linear; u{t) is then alinear

transformation of present and past measurements mv(t)

u(t) = L_t_m(Oot)]o (3° 15)

To avoid having to =ntroduce measure theory notions,

the form

t

u(t) : K_t) mv{t) + f A{t, q) my{T) dl-

O

L is required to be of

and the coefficients of K, A, F v, Glv, G2v, Hlv, Dlv, D2v, H2v, D3v, W

W 2 H F • G ,: v are all taken to be piecewise continuous functions of" 2 '° ":" " -t

their arguments°

(3.16)

Statement of the Problem

The to-be-controlled system is defined by Equations (3. 10) through (3. 14),

the class of admissible controllers by {3o15) and (3.16), and the cost-of-

control by (3° 8)o Within this framework the stochastic optimization problem

Given the system Equations, (3.10) through (3o 14), find the linear transfor-

mation L: Equations (3° 15) and (3. 16), that minimizes the cost-of-control

_r.,.

-.-_Equation (3o8)o
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Scope of the Formulation

This problem is intended to be the basis of a load-relief controller design

procedure° Before proceeding to its solution, it is appropriate to comment

on the aspects of the design problem it encompasses.

The formulation incorporates into the design the stochastic nature of the incident

winds, the time-varying booster dynamics, the finite-time nature of the control

problem, the terminal translation and rotation constraints, and the in-flight

actuator and stress constraints. It defines an optimum linear controller, and

it provides a quality measure for evaluating any linear controller.

The formulation does not include design constraints on parameter insensitivity

and controller simplicity. The parameter sensitivity problem is that the

coefficients of the system equations are not precisely known in practice, and a

good controller should control well all possibly occurring parameter values.

The simplicity constraint is the familiar argument that the simpler a controller,

the more reliable it will be, and the number of amplifiers, summers, wires,

in a controller should be considered in the controller selection. Insensitivity

and simplicity were not included in the formulation because no convenient

means for including them was found. Questions on these constraints must

be settled by other methods.

etc. :

QUADRATIC EQUIVALENCE

In the previous subsection, the load-relief problem was cast as a stochastic

optimization problem. The stochastic problem was to minimize an upper

bound on the likelihood that one or more booster responses would fall outside

preselected limits.

In this subsection an iterative procedure for finding the linear controller which

minimizes the upper-bound J::-" is developed. The procedure is based on an

assertion of quadratic equivalence.
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The assertion states that the linear controller minimizing J* also minimizes

a quadratic functional of the first and second response moments (to e., means

and covariances)o The coefficients of that quadratic functional are the pc'trial

derivatives of J* with respect to the response moments, evaluated with the

moments produced by the optimum controller.

The assertion suggests the iteration procedure° In the procedure, quadratic

weights are initially chosen, and the resulting quadratic functional is minimized

by application of the known solution of the quadratic problem. The response

moments calculated with the quadratic-optimum controller are then used to

compute the partial derivatives of the upper-bound J*° This process is

repeated until the initially chosen coefficients and the derived partial deriva-

tives are approximately equal.

This approach to the minimization of J* is computationally convenient. The

maximum principle for this problem is cumbersome, and employment of it,

gradient techniques, or other variational techniques would entail extensive

digital evaluation of complex mathematical expressions. The iterative search

for the equivalent quadratic functional is direct, and the solution to the quad-

ratic problem is straightforward and computationally reasonable.

In the discussion, the iteration procedure and the quadratic equivalence

theorem are developed from Taylor's series expansions of J* and a quad-

ratic functional o

Notation

The most convenient notation for the exposition is that of mean-product

matrices, covariance matrices, and the trace of matrix products°
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Define the vector of mean responses r(t) as

ri(t) = E[ri(t) ]

and the matrix of mean-response-products R(t)as

(3.17)

R{t) = r(t)r(t) ' (3.18)

where the prime (') superscript indicates a transpose.

covariance matrix S(t) as

Define the response

S(t) = E<[r(t) - _(t)] [r(t) -_(t)] '}

The matrices R(t), S{t) are then positive indefinite and symmetric.
.th

ij term of R(t) is the mean-response-product

The

(3. 19)

Rij(t) = ri(t) rj(t)

and the ij TM term of S(t) is the covariance

Sij(t) = E/[ri(t,- ri(t) ] [rj{t)- rj(t)]}

It is shown in Appendix E that the terminal likelihood P(ai ) and in-flight

expectations E(N i) making up the upper-bound J;'," are functionals only of

response means and covariances. By replacing the mean responses by

the square root of the means squared, J;'." can be written in the general form

T

J".'- = fl[S(T), R(T)] + / f2 iS(t)' R(t)] dt

f-

.J

O

Define the trace TR of a square matrix to be the sum of its diagonal

components. The functionals TR[ V(t)R(t)] and TR[Q(t)S(t)] are then

the quadratic forms

(3.20)
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=TT
i=l i=l
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Vij(t)Rji(t)

n n

°F,E
i=l j:l

_iit)Vij(t)rj(t)

= r(t)'V(t)r(t)

TR[ Q(t)S(t)]

n n

i=l i=l

n n

i=l j=l

= E([r(t) - r(t)] ' Q(t) [r(t) - r(t)])

The quadratic form J**, where

T

j*;:-"= TR(Q(T)S(T)+V(T)R(T) + / [Q(t)S(t)+V(t)R(t)] dt)

O

(3.21)

then contains all of the mean-response-products and covariances contained

in the upper-bound functional J*.

Existence of S(t), R(t)

It is shown in Appendix F that the matrices S(t), R(t) exist (do not have

infinite coefficients) when the control law
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uit) = L[t, m(O,t)] i3.22)

is of the form defined by Equation (3.16).

Taylor's Series Expansion

The existence of S(t) and It(t) permits their expansion in Taylor's series

about a variation in the control law. Let the control law be of the form

uit) = L ° it, mi0, t)] + eL 1 [t, m (0, t)] i3.23)

where L ° and L 1 are of the form defined by Equation i3. 16), and ¢ is a real

constant lying in the range i-l, +1). It is shown in Appendix F that Sit) and

R(t) may be expanded in the finite Taylor's series

Sit) = Soit) + eSl(t) + ¢2S 2 it, e)

Rit) -- Roit) + e Rlit) + ¢2R 2 it, ¢)

i3.24)

where

(a)

(b)

So(t) are the covariance and response product matrices

obtained with ¢ set to zero (i.e., they are dependent

only on L o)

the matrices Sl(t), Rl(t) are dependent on L ° and L 1 but

are independent of ¢

ic) the coefficients of S2(t, ¢), R2(t, ¢) are dependent on L o,

L 1 and ¢, but are bounded above and below for ¢

lying in i-l, 1)
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If it is assumed that the functions fl[S(T}, R(T)] , f2[S(t), R(t)] making

up J* possess continuous second derivatives in the neighborhood of S o,

R o, J* may be expanded to

(3.25)

where

T

J":o= fl IS{T)' Ro(T)] + f
O

f2[ So(t), Ro(t) ] dt (3.26)

and

J,_ = TR SI(T) +

o  lSo,t,
]Ro(t)

Sl(t) +

S°(T) )
Ro(T)

So(t)

Ro(t)

RI(T) 1

Rl(t) dt

(3.27)

the quadratic functional J** similarily expands to

j.;':. = j,,..-,- + c J,'_,',, + e2j_,', , (¢)O
(3.28)

whe re

J':":'i= TR IQ(T)Si(T) + V(T)Ri(T) + [Q(t)Si(t) + V(t)Ri(t)] d
O

In both of these expansions, the first variations J_, J_* are independent

of the value chosen for ¢, and the second variations J_, J_* are bounded

for ¢ in the range (-1. +1).

(3.29)
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Minimization

, +eLIf it is assumed that for any ¢ in the range (-1 +1) the controller L ° 1

is an admissible controller, then, if L is the control law minimizing theo

upper-bound J*, the first variation J_ of J* is identically zero. If it were

not zero, one could always choose ¢ sufficiently small so that the first

variation would dominate the remaining term of the expansion

In which case, choosing the sign of ¢ opposite to that of J;_ would produce

a J* less than the minimum J_o" In addition, the second variation J_ is

positive semidefinite

(3.30)

(3.3l)

if L o is the optimum control law. If it were not (if it were negative), any

choice of ¢ would produce a J* less than the minimum Jo"

Assertion of Quadratic Equivalence

If the Q, V matrices of the quadratic functional J**

partial derivatives

_fl
Q(T) =

So(T)

Ro(T}

_fl
V{T) =

So(T)

no(T)

are chosen to be the

(3.32)



Q{t)

v{t)

 f21

= So(t)

lEo{t)

_f2

_R

So(t)

Ro{t) ,
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(3.32 cont'd)

then the first variations of J** and the upper-bound J* are identical

If L is the control law minimizing J_',",it follows that
0

This is a necessary condition for the minimization of the quadratic J**,

and it suggests the following assertion:

The linear controller L minimizing the upper-bound J* also minimizes
o

the quadratic functienal J*-':-" defined by Equations {3° 21) and (3o 32)o

This assertion is the basis of the optimization technique described below.

It is not stated as a theorem because doing so would require showing that the

upper-bound J* has a minimum_ that the minimized J* has continuous

first and second derivatives with respect to the matrices S(t), R{t), and

that definitions {3o 32) imply that sufficiency conditions for the minimization

of J** are met° It was assumed in the study that J* has a minimum, and

that the iteration procedure described below would converge to ito

(3.33)

(3. 34)
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Examination of partial derivatives of the terminal likelihoods P(ai) and in-

flight expectations E(Ni) reveals that the derivative conditions on J* would

be met if the determinants of R(t) and S(t) satisfied

0 < DET [S(t)]

DET[ R(t)]

< _ for t¢ (0, T)

< _ for t¢ (0, T)

(3. 35)

It is known from quadratic theory that the quadratic J** can be minimized

if the matrices

Q(t) 1v(t)
are positive semidefinite for to(0, T)

D1v(t) 'Q(t)D1v(t)

D1v(t) V(t)D1v(t) }are positive definite for te(0, T)

[The matrix DIV(t) is the contribution of the control to the response r(t),

Equation (3° i0). ] It was found that the values of S(t), R(t) produced by

the iteration satisfied {3.35) and that, in the neighborhood of the optimum

controller, the matrices _f/_S, bf/_R satisfied (3.36).

(3.36)

The Iteration Procedure

The above assertion suggests the following iteration technique:

(a) Choose values for Q(t), V(t)

(b) Find the controller minimizing J** by application of the

quadratic theory
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(c)

(d)

(e)

Calculate the response products R(t) and covariances S(t)

obtained with the quadratic-optimum controller

Calculate the matrices bf/_S, _f/BR and compare with the

Q, V matrice initially chosen

Rechoose Q, V and repeat (b), (c) and (d) until the derived

partial derivatives satisfy Equations (3.32). The choice

of new Q, V matrices can be made by gradient, Newton-

Raphson, or other standard iteration techniques.

The procedure is shown schematically in Figure 3-1.

J CHOOSE Q, V

MINIMIZE QUADRATIC J**

J CALCULATE R, S

t

J CALCULATE elf a f
a-_- ' -_-

'_UTUT S

COMPARE

#f
-V?

---,_ = Q?

I

I

[

NO_
v

RECHOOSE

Q,V

Figure 3-1. Iteration Procedure
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This approach to minimizing J* requires, in theory, continuing the iteration

process until Equations (3.32) are satisfied at every time instant t in the

flight interval (0, T). Matching all of the functions _f/_Sij (t), _f/_Rij(t)

over the entire flight is a difficult task, and it would seem that the above

iteration implies a great deal of labor.

Fortunately this was not the case in the examples considered in the study.

Whether or not the above procedure would be eomputationally reasonable for

other load-relief problems is not known. In this study the insensitivity of

the R, S matrices to variations in the Q, V matrices greatly simplified the

iteration requirements. The simplifications are discussed in detail in

Section IV under the heading "Q Matrix Sensitivity".

THE QUADRATIC PROBLEM

The iterative procedure described in the previous subsection converts the

minimization of the upper-bound J* to minimization of the quadratic functional

J** defined in Equation (3.21). The determination of the controller minimizing

the quadratic J;'-'* is discussed in this subsection.

There is a problem of brevity in discussing the minimization of J**. The

results on which the minimization is based are scattered throughout the

technical literature, and inclusion of all of the significant theorems of those

publications in one discussion is a project equivalent to writing a textbook.

The discussion below is in the nature of a summary. The reader is asked to

return to the works referenced for detailed derivations of the results.

In the study, J** was minimized by following the digital optimization procedures

presented by Tou (Ref. 7). Tou formulated the quadratic problem as a

difference equation problem, and he derived the optimum controller by
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applying the techniques of "dynamic programming". The difference-equation

approach he employed is particularly well suited for digital computation of
1

the quadratic optimum controller.

The algebra and notations of the difference-equation - dynamic programming

approach are cumbersome and tend to obscure the central issues of the quad-

ratic theory° The quadratic problem is discussed as a differential-equations

problem in the following° It is shown that the minimization of J** can be
separated into a deterministic problem and a stochastic problem, and that the

solutions of these two problems can be combined to form the optimum controller.

The difference-equation equivalents of the Riccati equations defining the solution
are presented in Appendix Go

Problem Division

The J** minimization problem can be divided into the control of the mean

response r{t) and the control of the response deviation from the mean,

r(t) - r{t)o The original problem was:

Given the linear system

x(t) = F(t) x(t) + Gl(t) u(t) + G2(t) nl(t) + G3(t) v_0(t)

r(t) = Hi(t) x(t) + Dl(t) u(t) + D2(t) vto(t) (3.37)

m(t) = H2(t) x(t) + _2(t) ,

1Unfortunately, Tou did not pay too much attention to existence theorems. In

particular, he inverted matrices without showing that the inverses existed.
It can be shown that all of his results are valid if it is assumed that the difference

equation equivalents of the conditions expressed by (3.36) are true.
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where _I' _2 are white Gaussian processes

E[ _l{t) T]l{t 1) ']

E[ _2(t) 92(tl)']

E[ 91(t) 92{tl)']

= wl(t) 6(t - t 1)

= W2{t) 6(t - t 1)

= W3(t) 6(t -t 1) ,

the initial state covariance is known, and vw{t) is the known {deterministic)

mean wind. Find the linear transformation of present and past measured

outputs m(t)

(3.38)

u(t) = L[t, m(o,t)l (3.39)

that minimizes the quadratic J**

J;'.-'".-" = E{[r(T)- r(T)] 'Q{T)[r(T)- r(T)]} +_(T)' V(T)r(T)

TI }
0

(3.40)

where r(t) is the mean response.

The expression r(t) is the response of (3.37) when the inputs El(t), _2(t)

are zero. By defining x, rn, u to be mean responses, and

X;": = X - X

m* = m - m

U;'" = U -

r* = r - r ,

(3.41)
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there results the two sets of system equations

_(t) = F(t) _ (t) + Gl(t) u (t) + G3(t) vw(t)

r(t) = Hl(t) x (t) + Dl(t) u (t) + D2(t) v (t)

re(t) : Hl(t) x (t)

.3.42)

and

x*(t) = F(t) x"(t) + Gl(t) u"(t) + G2(t) _l(t)

;{¢ .,.

r (t) = HI(t) x"(t) + Dl(t) u"'(t) (3.43)

m::=(t) = H2(t) x::=(t) + E 2 (t)

The cost J becomes

J = [r(T)'V(T) r(T) +fT

O

r(t)'V(t) _'(t) dt]

+ E[ r*(T) 'Q(T) r:"(T) +fT
O

,e. .t.

r"(t) 'Q(t) r"(t) dt]

(3.44)

;7-

Since u in (3.43) does not in any way affect r in (3.42), and u in (3.42) does

not in any way affect r in (3.43), the controls u and u may be designed
._,,..=,,..

separately to minimize their respective contributions to J
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The Kahnan Deterministic Problem (Ref. (;)

The me_n control u will b,, determim_d first.
r,: ;',.-

3- , ,.vhc're
r

Given (3.42),

T

':"':: = r(T)'V(T) _'(t) +fa r
0

r(t)'v(t) r(t) dt

the functional

(;3. 4,_)

is to be minimized.

Examination of the responses whose terminal behavior is to be controlled

(drift, drift rate, etc.) reveals that the equations for those responses do not

contain the final control u(T). Since Q(t), V(t) are chosen so that the
.-,,-.;,..

quadratic J contains only those covariances and means appearing in the

upper-bound J , it can therefore be assumed that the contribution of

u(T) to r{T) 'V{T) r(T) is zero. That is,

V(T) DI(T) = 0

The above problem is then a Bolza variational problem (Bliss,

By writing

,',_,',.- r T

Jr = G 1 x(T) + / G2 x(t) , u(t),t dt

O

Ref. 11).

(3. q_;)

The Hamiltonian for the problem is

H = G 2 +k'x (3. 47)

and the control u(t) is defined by the equations
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5H - 0
5u (t)

_H
= - k(t)

_x(t)
(3.48)

5G 1
- k(T).

_x(T)

With

[ Hl(t)x(t ) + Dl(t)u(t ) + D2(t)vLo(t)] 'V(t) [ Hl(t)x(t) + Dt(t)_(t)

+ D2(t)Vo(t) ] + k(t)' [ F(t)x(t) + Gl(t)u(t) + G3(t)vLo(t) ]

(3.49}

then

5H - -k (t) = F(t) "k(t) + 2Hl(t)' V(t) [ Hl(t)x(t) + Dl(t)u(t) + D2(t)V_o(t) ]x(t)

5G1 = k(T) = 2HI(T)'V(T) [ HI(T)'x(T) + D2(T)v_)(T) ]
x(T)

5H = 0 = Gl(t)'k(t) + 2Dl(t)'V(t) [Hl(t)x(t) +D

By making the additional substitutions (as in Ref. 6)

l(t)u(t) + D2(t)v (t) ]

k(t) = 2[ Pv(t) x(t) + g(t)]

u(t) = Kv(t) x(t) + fv(t),

and assuming that the inverse [ Dl(t) ' V(t) Dl(t) ]

results the familiar Riccati end conditions

(3.50)

-1
exists for t e[ 0,T), there
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Pv(T) = HI(T)'V(T) HI(T)

g(T) = HI(T)'V(T) D2(T)Vo(T),

(3.51)

the backwards differential equations

i_v(t) = F(t) ' Pv(t) + Pv(t)F(t) + Hi(t)' V(t)Hl(t)

_ [ Pv(t)Ol(t) + Hi(t ),V(t)Dl(t)] [ Dl(t ),V(t)Dl(t)]-I

• [ Ol(t) 'Pv(t) + Dl(t) _V(t)Hl(t) ]

(3.52)

g(t) = F(t)'g(t) +[Pv(t)G2(t) + Hl(t)'V(t)D2(t)] v (t)

- [ Pv(t)G1 (t) + Hl(t)'V(t)Dl(t)][ Dl(t)'V(t)Dl(t)]

+ Dl(t) ' V(t)D2(t)vo)(t)] ,

-1[ Gl(t ) _(t)

and the controller equations

Kv(t) = - [Dl(t)'V(t) Dl(t)-i [GI(t)'PV(t)'PV(t) + Dl(t )'V(t) Hl(t) ]

fv(t) = - [Dl(t)'V(t) Dl(t) ]-1 [Gl(t ),g(t) + Dl(t)'V(t) D2(t) :¢0(t)]

These three sets of equations completely define the mean control u(t).

(3.53)

The Stochastic Problem

Given the system equations, (3.43), it remains to find the controller

u*(t) = L(t, m [o,t])
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.i..t.

minimizing the quadratic J':::"
r

.,., ...... --IT ......
J, = E[ r"(T)'Q(T) r" (T) + r"(t) ' Q(t) r"(t) dt] (3.54)

Jr
O

Let x (t)be the sum

g_

x (t) = Xl(t) + x(t) (3.55)

where x I (t) is defined by the orthogonality condition

E[ Xl(_) '_(t) I m'(o,t), u"(o,t)] = 0 (3. 56)

This is the expected value of the product xl(t) '7(t), given present and past
.I.

output measurements m"(t) and past inputs u"(t). Let KQ(t) be the set of gains

defined by (3.51), (3.52) and (3.53) when V(t) is replaced by Q(t). It is

{ ,} ......asserted that the controller L t, m" (0,t minimizing the quadratic J".,7 is

u (t) = KQ(t) xl(t)

That is, the optimum control input u*(t) is the product of the state estimate

xl(t) defined by the orthogonality relation (3.56), and the gains KQ(t) defined

by the Riccati equations, (3.51), (3.52) and (3. 53).

This assertion is known at the "separability property".
g-..#

the J, minimization into two problems:

It permits separating

The determination of the state estimate x (t)
1

The determination of the controller gains KQ(t) that would be employed

if the entire state x;:'(t) could be measured, and the system inputs

l(t) were known
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The assertion, if true, considerably simplifies the minimization of Jr':' "

The assertion has been proved by Tou (Ref. 7) for a difference equation

formulation of the quadratic problem. Tou's equations for the optimum

discrete controller converge, when the sampling interval is reduced to zero,

to a continuous controller of the form KQ(t) xl(t). To the writers' knowledge,

the assertion has not been proved or disproved for a continuous-time formu-

lation. The convergence of Tou's controller to the above is considered strong

evidence that the assertion is true, and it was assumed true in the study.

State Estimation

The state estimate xl(t) must be generated to complete the controller design.

The problem of generating state estimates xl(t) satisfying the orthogonality

(3.56) has been completely resolved. In Kalman (Ref. 3) it was known that

the orthogonality condition (3.56} implied that, with x (t) Gaussian, xl(t} is

the conditional expectation

x.... ]}"(t) Im [o,t l, u [o,txl(t) = E "_'" '_ (3. 54)

It was.,, further.,.shown that xl(t) could be generated by a linear transformation

of m'"(t} and u"(t}

_t "" txl(t) = L* ,m"[o,t], u[o,t] (3.55)

In Reference 3, Kalman found the appropriate linear transformation L for

the case where

rank [ W2(t) ] = dim [ m':'(t)]

W3(t) = 0
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That is, every non-zero linear transformation of m'"(t) contains white noise,

and the inputs _l(t) r12(t)in (3.43) are uncorrelated. In Reference 4, Kalman

removed the latter restriction (W 3 = 0).

Bryson (Ref° 5) showed that all of the cases in which not all output measure-

ments were noisy

rank [ w2(t) 1 <dim [ m (t) l

could be reduced to the latter Kalman formulation+ The paper contained

successive treatments of all occurring special cases, and it is difficult to

summarize its content in one or two paragraphs. In part, Bryson reduced

the dimension of the estimation problem by finding all of the states (or

state projections) whose present values could be ascertained from linear

transformations of the current output m (t) and its derivatives d3m'"(t)/dtJ.

Assuming the (Bryson-reduced) system is of the form (3.43), Kalman's

solution showed that xl(t) could be generated from the linear system

x l(t) =[ F(t) - L(t) H2(t) ] xl(t) + L(t) m*(t) (3.56}

where L(t) is the solution of the forwards Riccati equation

(t) = F(t) Prl(t) + P (t) F(t)'+G2(t) Wl(t) G2{t)' (3.57)

-(Prl(t) H2(t)'+Gl(t) W3(t))W2(t)-i (W3(t)'Gl(t) + H2(t) Prl(t))

Then

-i

L(t) = (P (t) H2(t)' +Gl(t) W3(t) W2(t)

where the initial conditions are

p (o) = coy [ x'(o) x"(o) ] (3.58)



- 69 -

Combining the Results

The optimum control is the sum of the deterministic and stochastic solutions

u(t) = u(t) + u*(t)

= Kv(t) _(t) + fv(t) + KQ(t) x 1 (t)

= KQ(t) [ xl(t) + x(t)] + [ Kv(t) - KQ(t)] x (t) + fv(t)
A

= KQ(t) x(t) + f(t)

where f(t) is the deterministic input

f(t) = [ Kv(t) - KQ(t)] x(t) + fv(t)

and x (t) is the conditional state expectation

A

x(t) = xl(t) +x(t)= E[x(t) ]m(o,t), u(o,t), _rto(o,t) ]

(3.59:)

(3.60)
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SECTION IV

DIGITAL RESULTS

The digital results obtained in the course of the study are presented in this

subsection.

Digital results were obtained only for the seventh-order, constant-angle-

of-attack, rigid "Model Vehicle No. 2" missile described in Section II. The

missile was assumed to _y for 150 seconds, from launch to burnout, and

the response deviation limits considered were:

0

Final drift

Final drift rate

Final angle-of-attack

In-flight gimbal angle

In-flight bending moment

I z(150}l< 3000 meters

1z(150) 1< 40 meters/sec

1_{150} +O. 388 a(150)I< 0. 0453 rad/sec

I _(t) I< 5 degrees

I Ib(t) I < 2.25-106 kilopon-meters.

The angle-of-attack limit is actually a limit on the angle-of-attack side forces

on the upper stages at burnout. The bending moment limit refers to the bend-

ing moment at a station 33 meters from the vehicle tail; Ma 'and M E ', as

functions of position along the missile fuselage, both peak in the neighborhood

of the 33-meter station at all time instants in the flight.

Significant details of the quadratic-equivalence iteration _echnique employed

in the minimization of the upper-bound J are presented in the first subsection.

The example controllers designed by the technique are then discussed. The

section concludes with presentation of the digital evaluations of those controllers,

a simplified version of one of the controllers, and a competitive minimax

controller.
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ITE RATION DETAILS

This subsection contains discussions of several simplifications of the

equivalent-quadratic iteration technique and of the "direct iteration"

method employed to close the iteration loop.

Q-Matrix Sensitivity

,
The iteration procedure for minimizing the upper-bound J requires:

Choosing quadratic coefficients Q, V

Finding the quadratic-optimum controller

Finding the response means and covariances

_f _f
Finding the partial derivatives _--_, _---_

Rechoosing the Q, V matrices and repeating the iteration

Upon running through this procedure several times, it became evident that

certain properties of the mean response and response covariances greatly

simplified the iteration process.

It was found that the response covariances and means were considerably

smaller that the imposed response limits. The bending-moment standard

deviation peaked to about one-fourth its limit in the high-dynamic-pressure

(max-q} region of the flight. The final standard deviations of drift, drift

rate, and angle of attack ran one-tenth or less their respective limits. The

gimbal-angle standard deviation ran one-tenth or less its 5-degree limit

throughout the flight. The various mean responses were very small, generally

about one-tenth their respective standard deviations.

It was found, in addition, that the response means and covariances and the

controller gains were relatively insensitive to changes in the Q, V matrices.
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The terminal coefficients Q(T), V(T) had virtually no affect on the means,

covariances, and gains in the high-dynamic-pressure portion of the flight

(around 80 seconds, or 70 seconds back from burnout). Large (i0:i)

variations in the Q's during the flight produced small (2:1 or less) variation_

in the bending-moment and bending-moment-rate standard deviations in the'

max-q region.

The terminal Q(T), V(T) values did, however, have a great effect on the

terminal response means and covariances. Variations of the ratios of the

bending-moment and bending-moment-rate coefficients significantly affected

the ratios of the corresponding response covariances.

These response levels and sensitivities had a considerable effect on the

upper-boundJ and on its derivatives bf/bR, bf/bS. The equations defining

J are derived in Appendix F. The equations for the derivatives bf/b R, bf/CS,

are presented in Appendix H. Examination of these expressions reveals that

they all contain exponential multipliers of the (Gaussian density) form

where 7 is the response limit, r is the mean response, and _ is the respons_ _

standard deviation. Since

<_<< 7

these exponentials took very small values. Further, reasonable variations in

the mean responses had virtually no effect on the exponentials

-_.e -1/2 "

_r
_0
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but small variations in the standard deviations had very large effects

"2

e-if2(#)
2)>> 1

In summary, it was found that:

(a)

(b)

Large variations in the V-matrix produced small variations

in the mean responses (and in the control deterministic input)

and almost indetectable variations in the upper-bound J

The likelihoods of exceeding the terminal-drift, drift-rate, and

angle-of-attack limits were sensitive to the terminal Q(T) values.

However, values were easily chosen so that the contributions

of these likelihoods to the upper-bound J were considerably

smaller (by at least four orders of magnitude) than that of the

bending-moment expectations.

(c)

(d)

(e)

The expected number of occasions that the gimbal angle exceeded

its limit could be made at least four orders of magnitude less than

the bending-moment expectation with virtually no effect on the latter.

The expected number of occasions that the bending moment exceeded
,

its limit was by far the largest term in the upper-bound J

The bending-moment and bending-moment-rate covariances peaked

in the high-dynamic-pressure portion of the flight. The large

values in this region dictated the values of the bending-moment

expectation and the upper-bound J
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(f)

(g)

Varying the Q-matrix had little effect on the bending covariance

amplitudes in the high-dynamic-pressure region of the flight.

These variations did, however_ have a significant effect on the

ratios of bending-moment covariances to bending-moment-rate

covariances.

#

The value of the bending-moment expectation° the value of J ,

and the values of the derivatives _f/SS were very sensitive

to small variations in the bending-moment and bending-moment-

rate covariances in the max-q region.

These properties of the response means and covariances suggested that the

iteration procedure for minimizing the upper-bound J could be considerably

simplified as follows:

(1) Since ,! was virtually independent of the values assigned to the

coefficients V(t), it was decided to set

V(t) = Q(t)

(2)

(3)

This assignment produced reasonable mean responses, and it

reduced the number of Riccati equations involved in each iteration

from three to two (one each for the deterministic input, the

stochastic gains KQ, and the state estimator; the first of these

was deleted). No attempt to match V(t) to 5f/SR was made.

Since J was virtually independent of the terminal values of

Q(T), once small terminal liklihoods were produced, no

further variations of Q(T) were made. No attempt to match

Q(T) to 5fl [SS(T) was made.

Since J was virtually independent of the gimbal coefficients in

Q(t), once small gimbal responses were produced, no further

variations of these coefficients were made. No attempt to match

these Q(t) coefficients to their corresponding 5f2 / 5S(t) derivatives

was made.



I
- 75 -

(4) Since J was virtually independent of the bending-moment and

bending-moment-rate covariances in the early and late portions

of the flight (low-dynamic-pressure portions), no attempt to

minimize these covariances was made.

These simplifications permitted focusing the iteration procedure on

reducing the bending covariances in the high-dynamic-pressure region of

the flight.

Two engineering rationale were added to the above observations to produce

a fifth simplification. These were that:

(h) The coefficients in the vehicle equations are not precisely known

in practice. Therefore, attempts to reduce bending covariances

by i0 percent or less are a waste of time, as the errors in these

covariances are at least that large.

(i) Little faith can be placed in the bending-moment-rate responses.

As discussed in Section II, the bending-moment-rate equation is

artificial, over-simplified, and of doubtful validity. Therefore,

attempts to achieve anything smaller than gross reductions of the-

rate covariances are unwarranted.

These rationale, combined with the strong sensitivity of J* and the derivatives

f2 / _S(t} to small changes in the bending covariances, suggested the

simplification:

(5) The iteration process could be terminated when it had converged

to the extent that further iterations produced small changes in the

bending covariances in the high-dynamic-pressure region of the

flight. That is, the iteration termination was based on covariance

convergence rather that convergence of J* and its derivatives



-76 -

A sixth simplification that was never experimentally justified was employed:

(6) The Q-matrix coefficients in the course of the flight [ in the region

[O,T), not including the terminal Q(T) values] were made constants,

Q(tl) = Q(t 2) for t 1, t 2 >_T.

This latter simplification amounts to assuming that variations in the Q-matrix

before and after the max-q region would not have large effects on the max-q

bending covarianees. This assumption was never tested.

It was not tested for reasons of convenience. The constant Q:s, with the Q

coefficients determined from the max-q _f]_Q derivatives, were used to
_,,_

start the iteration procedure. The upper-bounds J produced with the

constant Q's were of the order of 10 -6 , and the resulting controllers were

obviously good controllers. The analog-simulation tests described in

Section V were getting underway about this time, and they required a firm

commitment as to the controller to be evaluated. It was decided to retain

the constant Q_s and investigate the estimation and bending-moment anomaly

problems, rather than to continue iteration tests. Time-varying Q-tests

were formulated and programmed, but each time they were to be run there

was always something else more important to be tested.

In retrospect° not testing the assumption was an error.

None the less, the assumption is thought to be true. The various bending

covariances are reasonably flat-topped (nearly constant) across the max-q

region° indicating that the QVs over that region should be nearly constant.

Further° it is known from the terminal Q(T)-variations that the effects of

Q-variations in the Riccati equation damp out quickly. The control gains

in the max-q region would then not be much affected by Q-variations before

and after max-q, and the system covariances at max-q should therefore not

be much affected. The bending-moment-rate covariance should be least

affected since its value is largely determined by high-frequency wind-rate terms.
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Needless to say, these six simplifications greatly reduced the iteration

computation times.

Direct Iteration

In the discussion of the iteration procedure in Section Ill, it was stated that

new values for the Q, V matrices could be chosen after each iteration by

gradient_ Newton-Raphson, or other iterative techniques. A crude but

simple "direct iteration" procedure was employed in the study.

Letting Qi be the Q values at the ith iteration and _fi/_S be the derivatives

produced by those Q_s, the direct iteration procedure, choose new Q values

with the algorithm

_fi

Qi+l(t) = kQi(t) + (l-k) bS(t)

where 0 < k < i. All of the above observations and all of the numerical results

presented below were obtained with this algorithm.

The successful employment of this algorithm was due mostly to the monotonicity

of the derivatives and the effects of varying Q. Increasing the quadratic weight

on a particular response decreased that response covariance at the expense of

other response covariances. The derivatives _f/_S are monotone in the

covariances in the neighborhood of the optimum. Thus if a Q coefficient was

too lows the corresponding covariance and derivative _f/_S were too high, and

the direct iteration algorithm chose a higher Q coefficient to reduce the covari-

ance and the derivative.

This one-one relationship of theQ'sand _f/_S derivatives, the emphasis on the

bending covariances in the high-dynamic-pressure region of the flight, and the

obviation of final convergence, together made the equivalent quadratic iteration

procedure an efficient procedure for minimizing the upper-bound J
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This subsection contains discussions of the load-relief controllers designed in

the study° A total of five controllers were designed by the methods of Section III.

Three of these controllers were evaluated_ but a lack of time prevented eval-

uation of the other two°

The first four of the five controllers were designed for the seventh-order,

constant-ang!e-of-attack, "Model Vehicle Noo 2" described in Section IIo The

fifth was designed for the tenth-order "Model Vehicle No. 2" also described

in Section If0 This fifth model included a third-order approximation to the

local angle-of-attack effects along the booster fuselage° Since there was time

only to debug the tenth-order programs, no evaluations of this controller

were made, and there are no results on it to discuss°

The four controllers designed for the constant-angle-of-attack missile model

differed o_n]y in the responses assumed physically measurable.

O In the Simplest Case_ it was assumed that all four booster states

z, z, ¢, _, the gimbal state /3, and the two wind-filter states _, x

could be measured°

In Case I, it was assumed that z, z, ¢, _, and _ could be measured

and that the wind input vw(t) could be measured°

In Case II, it was assumed that z, _, _, _, and /3 could be measured

and the wind input v (t) could be measured but the measurement

was noisy°

In Case III, it was assumed that _, _, /3 and an accelerometer

output _ could be measured, but the _ measurement was noisy.
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The Simplest Case controller was considered because it permitted examination

of the control aspects of the load-relief problem without the complicating effects
of incomplete state measurement. The Case I and Case II controllers were

studied to determine the performance degradation produced by poor wind

measurement. The Case III controller was intended to approximate realistic

sensing; unfortunately a lack of time precluded evaluation of its performance.

The Simplest Case

In this example all of the states of the system were assumed measurable. The

optimum c0ntroller took the form

u(t) = f(t) + Kz(t) z(t) + K_(t) _(t) + K0(t) _(t) + K¢(t) ¢'(t)

+ K/3(t) _(t) + Kco(t) to(t) + Kx(t) x(t)

The seven gains and the deterministic input for this controller are presented in

Appendix J, Figures J-1 through J-8. The mean responses and several of the

response covariances obtained with the controller are graphed in Figures J-9

through J-22 of that appendix. A schematic of the controller is shown in

Figure 4-1.

The behavior of the controller can be deduced from the graphs in Appendix J.

The controller is essentially a wind canceller, a bending damper, and a dead-

beat, final-time controller. The deterministic input f(t) tries to cancel the

effects of the deterministic (mean) wind input v (t). The feedforward input

Kw(t) c0(t) + Kx(t) x(t) from the wind filter tries to cancel the effects of the

wind deviations from the mean wind. The feedback input K_(t) _(t) + K z (t) _(t)

+ Kz(t) z(t) + K_ (t) ¢" (t) + K_(t) _(t) damps the effects of the wind not perfectly

cancelled by the feedforward input.
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Figure 4-i. Simplest Controller Schematic

In the last 5 seconds of the boo'ster flight, the five feedback gains K_, K z ,

K z, K_., K_ are chosen to force nearly dead-beat (zero) final values for

drift, drift rate, and angle of attack (the responses whose terminal behavior

are to be controlled). That the controller well accomplished this is evidenced

by the sharp drop in these response covariances at the terminal time. The

price paid for the dead-beat characteristic is large bending at the end of the

flight, as evidenced by the peaking of the bending covariances there (the be_di_g

standard-deviation there is well below the bending-moment limit). The sharp

variations in the control gains at the end of the flight are due to the change of

emphasis from bending control to dead-beat control; the variations are typical

of those produced in linear dead-beat control problems.

In the first 145 seconds of the 150-second booster flight, the controller is

essentially a bending controller. Little control emphasis is placed on drift.

drift-rate, and local angle-of-attack responses, as these are easily controlled

in the final 5 seconds of the flight. Gimbal control is not a problem; as

pointed out below, gimbal control is an essential part of bending control.
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Examination of the expression for the expected number of occasions that the

bending limit is exceeded over the flight (Appendix E) reveals that the expecta-

tion. is monotone in both the bending moment Ib and the bending moment rate
Ib° That is, the controller should simultaneously minimize both of these
responses to successfully control bending. The equations for these responses
are

,_ + B ,_Ib - Mw

i b = 1 I6,a + +M

Thus, control of bending requires control of angle of attack, gimbal angle, and

their time derivatives.

Both of these bending terms could be made zero by cancellation if the control

input u(t) could be chosen so that _ and _ simultanously would satisfy

M i

Ot

M I

_ - I - Ot

The control input cannot be so chosen, however, because of the booster dynamics.

The wind vc0(t) enters the angle-of-attack _ directly

Vt0 - Z

_ = ¢ + V-

but _ and z require, respectively, double and single integrations of /3. Further,

the effects of v on ¢ and _ cannot simultanously be cancelled by the effects¢0

of _ because the center of pressure is not at the booster tail
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and one cannot pick a _ to simultaneously cancel the contributions of vco to the

o , > 0, cancellation wouldaccelerations ¢, _ Finally, because ME,> M s

require choosing _ of the opposite sign to _; but, with

- Xcg R/Ixx < 0

Rlm> 0

this sign of _ would tend to increase by increasing _ -"_ °

Without a p,erfect cancellation ability, the best that can be done with the feed-

bac:k gains Kfl_ Kz, K z, K_, K@_ is to reduce the _, z contributions to

and $ by damping angle of attack° Because

M_, > M_,> IEa ,l > > IEa , I

the gimbai-angle _ and rate _ contributions to Ib, Ib are larger than the
o

and _ contributions, and the feedback control is therefore a low-frequency

damper° If the reverse were true

M_ , < M s ,

one could afford larger _ and _ signals, and the resulting damper would be

high-frequency (tight, high bandwidth, fast response, eteo ).

The deterministic input f(t) cancels the effects of the mean wind vco(t) to some

extento The feedforward input K (t) c0(t) + Kx(t) x(t) similarly cancels the

effects of the (random) wind deviation from the mean. The cancellation em-

phasis is placed on minimizing the bending-moment Ib rather than the rate

Ib _ as reducing the former will reduce the upper-bound J;',_ more than would

reducing the latter



- 83 -

In summary, the feedforward inputs cancel the effects of the wind inputs on

bending as best possible. The feedback loop slowly damps the effects of the

wind inputs not perfectly cancelled. The feedback loop is an angle-of-attack

damper because it cannot be a perfect canceller. It is a low-frequency damper

because large or rapid gimbal motions are more expensive in bending than
are large or rapid angle-of-attack variations.

Since the expected number of occasions of exceeding the gimbal limit of 5 degrees
is also reduced by simultanously reducing _ and _, good bending control

automatically implies good gimbal control. In this problem the bending

restriction was much more severe than the gimbal restriction, and the latter
could be ignored with no ill effect.

{We feel a little guilty about the above explanation of the physical behavior of

the optimum controller. The explanation is based on the optimization results,

and it is no engineering feat to explain results already obtained. It was not
perceived before the stochastic problem was solved that the controller would

behave in the above manner. The saving grace of the situation is that it is an

argument for optimization theory; the theory, in this case, provided insight
into the physical nature of the control problem. }

The Gimbal Actuator

It was stated in Section II that the results of the optimization would not be

changed if the first-order gimbal actuator

= - 14.6_ + 14.6u
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were replaced by any first-order actuator

: -al_ + a2u

This result is due to the fact that the control input u(t) does not appear explicitly

in the upper-bound J_",' but enters J'* through the dependence of the bending and

gimbai expectations on the gimbal rate _o

With the above control law, _ is

= - 14o6/3 + 14o6 {K_ + f + K o x)

whe re K o

= ,'14o6K_ - 14o 6) fl + 14o6 [f{t) + K ° x]

x is sho_hand for

° z +K z +K _ +K¢¢+K ,2+K xK x = K_ z ¢° w x

?

If the _ = -al_ + a2u actuator were employed, the resulting

same form

would be of the

= - ale + a2 {K_;,../3+ f;:_+ K;:_-° x)

= {a2K_;:.. - a 1) _ + a 2 {f* + K':-" " x)

The two gimbal rates _ are equal if

f.,:, _ 14o6 f

a2

and

14o6
K _:" = K

a 2
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for Kz, K6, K¢, K¢-, Kto, K x, and

14.6 a 1 - 14. 6

K_,,,, = a2 K_ + a2

Since the control u(t) was chosen to minimize a functional of _, the gains and

deterministic input that would result from any first-order actuator can be

obtained from the present results via the above transformations.

Estimators

In the above "simplest case" it was assumed that the four booster states z,

, ¢°¢, , the gimbal state _, and the two wind-filter states to, x could all

be physically measured. In practice, of course, they cannot. The following

examples were introduced to assess the performance degradation implied

by incomplete state measurement.

The wind yea(t) in nature is not generated by a second-order filter, and

physical measurement of the fictitious wind states to, x is obviously impossible.

It is conceivable, however, that measurement of the wind amplitude vto(t)

might some day be possible. The first two estimators treat this case.

Case I Estimator -- In this example it was assumed that all of the vehicle

states _, z, _,, ¢, ¢" could be measured, and the wind input v (t)could be

measured. Estimates of the two wind-filter states to, x had to be generated.

The wind-filter equations derived in Section II are

vto(t) = vto{t) + oto(t) to{t)

nl(t)
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when _1 (t) is white noise. Since the mean wind vco)t_was known,
filter state ¢0(t_was obtained from

vco(t) - vco(t)
_(t) =

c_co(t)

the wind-

It was assumed that this signal could be differentiated but that differentiation

introduced noise _2(t). The measured signal was then

re(t) = c0(t) + _2(t) = -c3hx(t) + c 1 _/_ _l(t) + _2(t)

By letting

x(t) = xl(t) + x2(t)

where xl(t) was the known portion of x(t)

xl(t) = -c5h co(t) - c4h xl(t)

it remained to estimate x2(t)

x2(t) = -c4hx2(t) + c2_h--h_l(t )

given

re(t) + c3hxl(t) = -c3hx2(t ) + Clh _l(t) + E2(t)

This is the form of the Kalman filter problem discussed in Section III.
^

solution is the estimate x2(t)

o

^

x2(t) = (-c4h + Lc3"h) x 2 + L [ m(t) + c3"h xl(t)l

By adding the known xl(t) to this, the complete filter is

x(t) = (-c4h + Lc3h ) x(t) + L{_(t) + _2(t)] - c5h _(t)

The
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The complete estimator is shown in Figure 4-2, and the resulting controller

is shown in Figure 4-3.

Two levels of differention noise were considered

{°'E _ -= 10
W 2

and

E {_2_ _
- 1

W 2

where

E {_2(t)_2(tl)) = W26(t-t 1)

The gains L and mean-square measurement errors E r_[ x(t) - x(t)]27" for the
1

two cases are shOwn in Appendix K, Figures K-1 and K-2. It is seen there

that the effects of an increased signal-to-noise ratio are lower mean-squar e

measurement errors and higher gains L°

Case II Estimator -- This example is very similar to the above, the only

difference being that the measured wind vto(t) was assumed noisy

re(t) = vto(t) + _2(t)

where _2(t) is white noise.

.t

x(t)

o

-c5h

The estimator for this case takes the form

-c4h

to L
to

,+

i

x L
x

1
[-to+ --c_(vto-_to+ vl2) ]

tO
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Figure 4-2. Case I Estimator
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Figure 4-3. Control With Wind Estimation
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The estimator is shown in Figure 4-4. The controller employing this esti-

mator is of the same form as that for the Case I Estimator shown in Figure 4-3.

Figure 4-4. Case II Estimator

This estimator was introduced, in contrast to the Case I Estimator above, to

make evident the performance degradation implied by a noisy wind measurement.

Two noise levels were considered:

and

where

E ((v_ - /_) 2 }

W 2

-Ef(vw-v_°)2}- 1

W 2

= 10

E{TI2(t) _12(tl)} = W26(t-tl).
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The resulting gains Lto, L x are shown in Appendix K, Figure K-3_ and the

corresponding error covariances E {(_0-_))2}and E{(x-x) 2} are presented in

Nigure K-4. Again, the effects of an increased signal-to-noise ratio are

lower' errors and higher gains.

Case III Estimator -- This example was intended to approximate physical

reality. It was assumed that ¢, _, and _ could be measured, and a noisy

drift-accelerometer signal was available

.vhere

re(t) = z'(t)+ _22(t)

E[_2(t) _2(tl)] = 0.04 6(t-t I) (m/sec2) 2

Unfortunately, there was not time to evaluate the performance of this estimator.

!'he drift equation is

I V -Z I

.. to F-X
z(t_ - l_ _ +N _+ _ +_

m m V m

I%y letting z(t) be

z(t) = z1(t) + z2(t)

','.'here z (t) is the known portion of the drift1

zl(t_ - mR_ +me_ +_m ¢ + mV v
tO

the problem was to estimate to, x, z 2. and z 2 where the measured signal is

I ;-1} N vre(t) - ItrnB -_-_N 6- Fm-X ¢ _ _ to
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and the to-be-estimated states satisfy

_- -] Ncr

"" ] -N 0 to
z 2 m--V" m'--'V-

z 2 1 0 0

0 0 0

0 0 -c5h

w

0

0

-c3h

-c4h

tO

X

The resulting estimator,

tO

x

L_

+

0 :
I

I
0 '

I
]

0

0

-c3h

-c4h

after adding the known z 1, _1' is

N_

(-1 +L_) N tOmV 0 (1-L_) mV

N N_
1 +L z -mV 0, -L-z mV

Ng
N 0 -L tO

LtO mV tO rn.V

L -c5h N_
N 0 -b

Lx mV x mV

_ll(t)

A

z

z

tO

x

+

+

L
z

L x

] -L"
Z

(_+Vl 2) +

-L x
4

V

-} +t 3 +N v_
m

The gains and error covariances for this estimator are shown in Appendix K,

Figures K-5 and K-6.
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N UMERICA L EVA L UA TIONS

Six controllers were evaluated numerically by computing their response

moments and upper-bound measures. Their evaluations are presented in

this subsection.

Controller Descriptions

The controllers evaluated were:

(I) Simplest Case - This is the controller described above. All vehicle

and wind-filter state components were measured.

(2) Ca___sse_II- This controller employed the Case I estimator described

above and the "simplest case" control gains. All vehicle state

components plus the wind vw(t) were measured. Only the x(t) wind-

filter state was estimated. The 10:1 signal-to-noise ratio estimator

was evaluated. This controller was evaluated to ascertain the degrada-

tion produced by incomplete wind knowledge.

(3) Case II - The Case II controller employed the 10:1 signal-to-noise

ratio Case II estimator described above and the " simplest case"

control gains. All vehicle states were measured, a noisy wind

measurement was made, and the two wind-filter states u)(t) and x(t_

were estimated. This controller was evaluated as a contrast to the

above c ontr ollers.

(4) K¢0 = K x = 0 - This coritroller is the same as the ideal, simplest

case controller except that the feedforward gains K (t) and Kx(t) were

set equal to zero. The first controller above employs perfect wind

measurement and the second and third employ imperfect wind

measurement. This controller employs zero wind measurement.
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Simplified - This is a " constant-gain" approximation of the Case I

controller above. It was developed by engineering cut-and-try

methods in the analog-simulation studies; its development is

described in Section V. The gains K/3, K¢, and KS were made

constants, K and K were set equal to zero, K and the deter-
X Z 0J

ministic input were left unchanged, and K z was replaced by a

piecewise constant time function. This controller was evaluated

to determine whether the optimum load-relief controller could be

successfully simplified.

(6) Minimax - The minimax controller was developed under contract

NAS8-11206 and it is described in detail by Graham (Ref. 12). The

minimax design procedure is a frozen-point technique and its basic

objective is to minimize the maximum possible response excursions.

It was evaluated as a comparison to the stochastic formulation

employed in this study. Unfortunately gain values for this controller

were available only through the max-q region, so its terminal

behavior and response likelihoods could not be evaluated.

Evaluations

The response covariances of the six controllers are presented in Appendix L,

Figures L-1 through L-20. The significant features of the covariances and

their resulting likelihoods are tabulated in Tables 4--1, 4--2, and 4-3.

The likelihoods and expectations making up the upper_-bound J* are presented

in Table 4-1. It is readily seen that meeting the gimbal and terminal con-

straints is not a problem. The bending expectations are the only significant

contributors to the upper.-bounds J* for all five controllers.
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Table 4-2. Numerical Evaluations - Bending

Controller

Simplest Case

Case I

Case II

Kio • K x = 0

Simpli fied

Minimax

aib peak

0. 434 x 10 6

0.446 x 106

0.481 x 106

0. 756 x 106

0. 56 x 106

i. 57 x 106

a[b peak

I. 15 x 105

I. 14 x 105

I. 41 x 105

0.61 x 105

i. 48 x 105

2.37 x 10 5

T(Ib2)> i0 II

20*

30*

25*

50*

35*

T(lb2)> I0

I0

15*

20':'

i0 Ib peak

0. 538 x 105

0. 538 x 105

0. 538 x 105

0. 538 x 105

5. 9 x i05

aib peak

a[b peak

T(Ib2) > i0 II

T(ib2)> i0 I0

ib

= peak bending-moment standard-deviation

= peak bending-moment-rate standard-deviation

• approximate length of time that (_ib)2> 1011

• approximate length of time that (a}b)2> 1010

• peak mean bending-moment

Numbers to nearest 5 seconds

No data
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The J* tabulation shows that the price of poor wind measurement is small,

but zero wind measurement is expensive. The simplified controller fares

worst of all. But the progressive increase in J* in this tabulation is misleading.

The data in Table 4-2 better illustrates the controllers' behaviQrs. Poorer

wind measurement implies two effects:

The peak bending responses are slightly larger.

The bending responses are large over longer periods of time,

The second of these effects is considered significant.

The first effect is of some significance, but in an engineering sense the

upper-bound criterion weights it too heavily. As discussed above the J*

functional is extremely sensitive to small variations in the bending covar-

iances. This sensitivity is evidenced in the five-orders-of-magnitude dif-

ference between the simplified J* and the simplest-case J:'.-'. Figure 4-5 presents

IN ]; it is clear from the
plots of the bending expectation densities-_- E Lib J
peaking of these plots that the value of J* is determined almost solely by the

peak covariances. The original dynamical description of the missile is too

imprecise to warrant reading this much significance into small peak varia-

tions.

The control action of the feedforward wind inputs is evidenced by the per-

formance of the K = K x = 0 controller. Comparing it with the three

optimum controllers, the data in Table 4-2 show that the feedforward inputs

raise the bending-moment-rate covariances, lower bending-moment covar-

iances and reduce the intervals over which the bending-moment covariances

are large. That is, the feedforward inputs pay a rate price to lower ampli-

tudes. Both J* and the width of the bending-moment covariance peak show

that this is a good bargain. It is concluded that including feedforward inputs

purchases a significant improvement in the load-relief controller's performance.
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Figure 4- 5.

Bending Likelihood Densities
for Various Controllers

Comparing the simplified controller's bending covariances with those of the

three optimum controllers, it is evident that the simplified controller is

slightly worse in all categories. It is concluded that the optimum load-relief

controller can be successfully simplified.

The minimax bending standard-deviation peak is too close to the 2.25 x 106

bending limit for comfort. Apparently too much weight was given to other

booster responses in the max-q region when this particular controller was

designed.

The terminal behavior of the first five controllers is evidenced in Table 4-3.

The load-relief controller is a fantastic dead-beat terminal controller. It is

evident that the large gain variations in the last 5 seconds of flight are not

needed. The terminal responses are extremely small, and simpler gain

functions producing terminal responses larger by orders of magnitude would

be entirely acceptable. The simplified controller's terminal performance

demonstrates this.
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SECTION V

SIMULATION RESULTS

The load-relief control system defined by the synthesis technique described

in the previous sections was thoroughly evaluated on a time-varying flight

simulator. The purpose of the evaluation was to demonstrate more fully the

performance capability of the controller and to provide an engineering evaluation

of the system. The work was performed by the Aerospace Flight Systems group
of Honeywell' s Aeronautical Division.

The simulation was mechanized on a hybrid analog-digital computer. Rigid-

body vehicle equations of motion and data were simulated on the analog com-
puter, and the load-relief controller was simulated on the digital computer.

For purposes of comparison, a conventional control system and the minimax

control system were also evaluated on the simulator. A complete description

of the simulation is presented in Appendix M.

The load-relief controller was evaluated for the nominal wind model and for

Sissenwine wind models furnished for the minimax contract (NAS8-I1206).

Vehicle and controller parameter variations and simplification of system mech-

anization were investigated to determine the practicality of the controller.

Finally, the performance of the load-relief controller was compared with that

obtained for a conventional controller and the minimax controller.

The nominal load-relief control system was found to provide superior performance

in terms of the performance constraints when compared to the conventional control

system and the minimax controller. The load-relief controller demonstrated

satisfactory tolerance to ± 20 percent variations in both the vehicle and controller

parameters. Further, it was shown that the load-relief control system could be

greatly simplified by replacing several of the time-varying gains by constants or

piecewise constant approximations. Analysis showed that if the wind angle of attack

12013-FR1
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could be measured no significant loss in performance would result if the Case I

or Case II estimator were replaced by a single time-varying gain. In general

the simulation showed that the deterministic input and the feedforward terms

were responsible for providing the load-relief capability, while the drift and

drift-rate feedbacks assured that the terminal condition constraints would be

met. The remaining feedbacks functioned to provide a measure of stability

for at least the early portions of the flight.

This section first describes the performance evaluation of the nominal load-relief

controller. The nominal system performance for a mean-wind input is compared

with that obtained from a pure digital computer simulation. The system performance

is then demonstrated for vehicle and parameter variations and for a variety of wind

disturbances.

Next, the simplification of the system is described and the change in performance

with each successive approximation is pointed out. The performance of the

simplified controller is presented and compared with that obtained from the nominal

load-relief controller.

The performance of a conventional controller and the minimax controller (defined

under NASA contract NAS8-I1206) is then presented and compared to that of the

load-relief controller.

Finally, the conclusions and recommendations drawn from the simulator evaluation

are presented. Appendix M describes the time-varying simulation, and Appendix N

contains the simulator time responses.
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NOMINAL LOAD RELIEF CONTROLLER

Description of System

The controller, which was designed by the methods described in earlier sections,

is referred to as the nominal load-relief controller and is shown in block diagram

form in Figure 5-1. As its name implies, the load-relief controller is designed

p.rimarily to minimize structural loads (bending moment) in the presence of cross-

wind disturbances. The actuator command signal produced by the controller is a

linear combination of five feedback and two feedforward signals (with time-varying

gains), and an open-loop wind-bias function known as the deterministic input. The

two feedforward signals, to and x, can be obtained from a Kalman estimator.

As in the design of any system, certaln assumptions are made al the outset. The

assumptions made in the design of the load-relief conl roller are the following:

Wind Model - The wind model used in the design of the controller

is a random wind composed of a deterministic mean wind plus a

stochastic component obtained by passing white noise through a

filter. A plot of the mean wind profile is shown in Figure 5-2.

Ideal Sensing - It was also assdmed that any variable required by

the controller (e.g., 7 z) was either available from a sensor or

could be generated by a Kalman estimator.

Nominal Trajectory - It was assumed that the vehicle follows a

predetermined trajectory. This assumption allows one to make

a rather accurate (withtn 20 pe__cent of actual) estimate of the

vehicle parameters over the entire flight. Nominalvahes of the

vehicle parameters as a function of' flight time are then used in

obtaining the controller gains (as a function of time) and in

designing the Kalman estimator to be used with a particular system.
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An examination of the individual terms of the controller equation is helpful

in understanding the operation of the controller and in determining what

changes in performance will result when the system is simplified. The

controller equation may be expressed in the following form:

¢(t)

¢(t)

/3(t)

U = z(t) +f(t)

i(t)

_(t)

x(t)

Graphs of the time-varying gains and the deterministic input f(t)appear in

Appendix N, Figures N-I through N-8. Analysis has shown that the attitude

and attitude-rate feedbacks _ and _ and gimbal angle _ primarily furnish a

measure of stability augmentation for the statically unstable Model Vehicle

No. 2. Further, the gimbal-angle feedback _ can be shown to alter the

frequency response characteristics of the actuator (see the following dis-

cussion on "Simplification of the Nominal Load Relief Controller"). Since

lateral drift z is a measure of the distance of the vehicle away from a

nominal trajectory, feeding back z and z provides a steering command to

assist in bringing the vehicle within a desired target area at burnout. The

feedforward signals obtained from an estimator are a measure of the deviation

of the wind magnitude (t0) and rate (x) from the assumed mean wind _ . Th(_ ,
b9

signals furnish load-relief capability for random wind disturbances. The d_,t_ ,-

ministic input f(t) is an open-loop command used to combat the assumed me_n

wind L" The assumption of a different nominal, or mean wind profile would

lead to a different deterministic input. The action of the deterministic input

will be more fully discussed unde.r "Performance Results" It should be em-

phasized that the load-relief controller derives its primary load-relief capa-

bilities from the deterministic input and from the feedforward signals.
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It is the function of the estimator to generate signals required by the controller

which are not otherwise measurable (i. e., by sensors). Since estimators may

be designed to generate many different combinations of controller inputs, the

complexity of the estimator will depend upon what information is assumed to be

available from sensors. The present discussion will serve to identify the esti-

mators investigated on the hybrid simulator. Discussion of the derivation and

operation of the estimators is contained in Sections III and IV.

Case I Estimator

The Case I estimator is a first-order estimator which contains one differentiation.

A block diagram of the Case I estimator is shown in Figure 5-3. Input-output

information for the system with this estimator is as follows:

Signals required to be sensed: _, _, _,

Signals assumed known: _¢0 = _/_

Signals generated by estimator: 2, ¢3

Z, Z, V
tO

Figure N-1 (Appendix N) is a time-response comparison of the estimated _ and _0

signals generated by the Case I estimator and the actual x A and ¢0A signals pro-

duced by the stochastic wind generator. A block diagram of the stochastic wind

generator is shown in Appendix M, Figure M-1. The excellent agreement of the

actual and estimated signals indicates that the Case I estimator works well.

Case II Estimator

The Case II estimator is a second-order estimator which contains no differentiation

and is thus more feasible to mechanize. A block diagram of the Case II estimator is

shown in Figure 5-4. Input-output information for the system employing the Case II

is exactly the same as that for the Case I estimator.
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A comparison of the actual xA and WA signals and the estimated )_and

is also shown for the Case II estimator in Figure N-I. Again the traces

of the actual and estimated signals are seen to agree very closely, indicating

that the Case II estimator works well.

Performance Results

Performance of the nominal load-relief controller was evaluated for the

following requirement s:

• Bending moment

• Gimbal deflection

<2. 25 x 106 kilopon-meters over

entire flight

<5 de:grees over entire flight

• Lateral drift Izl < 3000 meters at burnout

• Lateral drifl rate Izl <40 meters/sec at burnout

• Local angle of attack I"¢ + 0. 388 c_] <0. 0453 rad/sec at burnout

Performance of the load-relief controller (and of the other controllers used for

comparison) was investigated for the following types of wind disturbances:

Random Wind - Design of the load-relief controller was based

on the random wind which is composed of a deterministic wind

profile plus a stochastic component.

Mean Wind - This is the deterministic portion of the random wind.

The mean wind profile is shown in Figure 5-2.

Sissenwine Wind Profiles - These deterministic wind profiles were

obtained from the data package furnished by NASA. The five Sissenwine

wind profiles are all of similar shape but occur at different times in the

flight. The individual profiles are denoted by the time at which the peak

first occurs and are as follows:



48 seconds

56 seconds

64 seconds

72 seconds

80 seconds

- i07 -

The Sissenwine wind profiles are also included in Figure 5-2.

Because of the complexity of the hybrid simulation, it was desirable to

have some means of checking the results. A pure digital simulation was

made for this purpose. The deterministic nature of the mean wind made it

suitable as the input for these comparison runs.

Performance of the vehicle and load-relief controller for the mean-wind

input is shown on the analog computer trace of Figure N-2. The lateral

drift and drift rate from the hybrid simulation, as shown in Figure N-2,

are plotted with the corresponding variables obtained from the pure digital

simulation in Figures 5-5 and 5-6 respectively. The excellent agreement

of the results from the two simulations provides a high level of confidence

in each.

A similar comparison of the bending moment obtained by the two simulations

is shown in Figure 5-7. These results show only an order-of-magnitude

agreement for the two simulations. A better agTeement between the two

simulations could not be obtained because of the presence of a low-level random

noise generated in the A/D and D/A converters of the hybrid computer. This

low-level noise will not be significant for any disturbance other than the mean

wind since the bending moment response due to the other wind inputs will be at least

a factor of five larger.
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A more extensive examination of the mean-wind response indicates how the

load-relief controller functions to minimize the bending moment. The total

bending moment is calculated from the expression

A plot of M s' in Figure 5-8 shows that the Ma' coefficient is zero at the

beginning and end of flight and is a maximum in the middle of the flight.

' and peaks upThe M coefficient shown in Figure 5-9 is larger than M s

at the end of flight. It is generally true, however, that the values of angle

of attack a are at least a factor of 10 higher than the values of gimbal angle

'_ term of the bending-moment expression isfor any given flight. The M s

then the more significant of the two. The load-relief controller minimizes

the bending moment essentially by keeping a small when M'. is large and allow-

' is small.ing _ to become large when Ms.

The deterministic input f(t) plays a large part in the reduction of the bending

moment. Early in the flight, f(t) commands a positive vehicle attitude with

the result that the vehicle flies downwind (positive z). The deterministic input

then changes sign, driving angle of attack to zero and then causing the vehicle

attitude to become negative. The peak wind occurs while _ remains zero result-

ing in a low bending moment as discussed above. After the max-q condition

(at about 80 seconds), the lateral drift and drift feedback gains K and K. be-
Z Z

come orders of magnitude larger than their earlier values, driving the lateral

drift and drift rate to zero at burnout.

The excellent performance of the load-relief controller for the mean-wind

disturbance may be illustrated by comparing the performance results with

the performance requirements as follows:
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Performance Requirements

tib1<2.25 x 106 kp-m 0 < t _ 150

lfiI<5 deg 0 < t _ 150

Iz I< 3000 m t : 150

[i I< 40 m/sec t = 150

I "_ + 0. 388a 1<0.0453 rad/sec t = 150

Performance Results

Ib[ _;0.15 x 106 kp-m 0 <_t _'L,3 1

/3 l_ O. 1 deg 0 _t _ i ,_}

I z 1<25 m t = [,_,(!

1 _. I<0. 5 m/sec t = _50

t_ + O. 388 a l<O. 005 rad/sec t = ]50

All performance results are seen to be well within their required maximum v;_lu(,,_.

Performance results obtained with other wind disturbances all show that the t_,t_l-

ing moment is the only critical requirement for the system. Attention will thus

be focused on the bending moment for the remainder of the responses, and the

other four performance requirements may be assumed to be met unless other-

wise specified.

Evaluation of system performance for the random wind is made difficult by the

very nature of the input. Definite conclusions about the response to the random

wind necessitates a statistical average which (in theory) requires an infinite

number of responses. The results obtained, however, do present an appro×imale

measure of the performance.

Analog traces of system performance for the random wind for (a) _ = 5 = 0

(no estimator), (b) } and _ generated by the Case I estimator, and (c) } arid CJ

generated by the Case II estimator are shown in Figures N-3, N-4 and N-5,

respectively. Three complete flights (0 to 150 seconds) are shown for each

condition. The maximum bending moment over each of these flights is

indicated in Table 5-1.
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Table 5-1. Comparison of the Maximum Bending Moment for Various
Estimators With Random-Wind Disturbance

System

No Estimator

Case I Estimator

Case II Estimator

Run No. 1

0.65 x 106

0.60 x 106

0.7 x 106

II blMa x (kp-m)

Run No. 2

0.60 x 106

1.3 x 106

0.55 x 106

Run No. 3

0.80 x 106

0.9 x 106

0.75 x 106

The following conclusions concerning the system performance for the ran-

dom-wind disturbance may be drawn:

The maximum bending moment resulting from the random wind

is always higher than that due to the mean wind and generally

runs about a factor of five higher.

It is impossible to ascertain from the results presented

whether or not the x and _0 feedforward signals from the

estimator are effective in reducing the bending moment.

Performance of the vehicle and load-relief controller was investigated for

the NASA Sissenwine wind profiles as well as for the mean-and random-

wind disturbances. The maximum bending moments which result from the

Sissenwine wind disturbances will be significantly larger than those obtained

with the mean-wind disturbance for two reasons. First, the Sissenwine

wind profiles are much more severe than the mean wind, both in peak

magnitude and in rate of increase. Secondly, the deterministic input f(t)

was designed to counteract the effect of the mean wind, and, since it

remains unchanged, it will be less effective in reducing the bending moment

for other wind disturbances.



- 113 -

Results were obtained for the Sissenwine wind disturbances for the cases of

(a) no _ and _ inputs to the controller (ioe., no estimator), (b) _ and _ signals

generated by the Case ! estimator, and (c) _ and _ signals generated by the

Case II estimator, in addition, responses were obtained for a simulated

angle-of-attack sensor noise of 0o 5-degree amplitude on the input signal to

the estimators° It was found for all cases that the simulated sensor noise

had no effect on system performance. Analog computer traces of the results

are shown in Figures N-6 and N-7 for the no estimator system, in Figures N-8

and N-9 for the Case I estimator system, and in Figures N-10 and N-II for

the Case II estimator system. Results are also shown in Figures N-12 and

N-13 for the sensor noise added to the Case I estimator input to illustrate

the absence of effect on the results.

Table 5-2 presents the maximum bending moment experienced over each of

the flights for the Sissenwine wind disturbances.

Table 5-2. Comparison of Maximum Bending Moment for
Various Estimators with Sissenwine Wind Disturbances

Wind

Disturbance

48-sec

56-sec

64-sec

72-sec

80-sec

lib I max x 10 6 (kp-m)

Case I Estimator
No

Estimator

2.2

1.7

2.5

3.1

2°9

With No With 0.5-degree
Sensor Noise Sensor Noise

1.6

2.2

2.6

2.8

1.£

1.6

2.2

2°6

2.8

1.9

Case II
Estimator

1.4

1.8

2.4

2.6

1.5

From Table 5-2 it is apparent that, for all three system variations, the

bending moment did not remain within the required maximum of 2.25xi06

kp-m for the 64-second and 72-second wind profile disturbances. These

are the only cases for which the load-relief control system failed to meet

all the performance requirements.
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The results presented in Table 5-2 also show that the maximum bending

moments which occurred with the Case II estimator in the system are slightly

lower for each of the Sissenwine winds than for the Case I estimator. It may

also be seen that the amount of reduction in bending moment provided by the

esiimators, particularly the Case II estimator, is quite significant for the

48-second, 72-second, and 80-second wind profiles. Although the peak

bending moments which result from the 56-second and 64-second wind pro-

files are about the same with or without the estimators, examination of the

analog computer traces reveals that the length of time for which the bending

moment is a maximum is greatly reduced by the use of the estimators.

In summary, the estimators generally reduce the peak bending moment and

always provide a rapid reduction of the bending moment following the peak

value°

Parameter Variations

Performance of the nominal load-relief controller was also evaluated for plus

and minus 20 percent variations of all vehicle parameters and controller

parameters. Tlae deterministic mean wind was used as the disturbance input

for all parameter variation cases.

The results of the parame_er variations studies are shown in Figure N-14

through N-22.

In general, it can be seen that the system is more sensitive to variations in

the controller gains than to variations in the vehicle parameters.

Examination of the results presented indicates again that bending moment is

the critical parameter in terms of performance results. The maximum bend-

ing moment experienced during the total flight for each parameter variation

is given in Table 5-3.
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Table 5-3. Maximum Bending Moments Experienced with
Parameter Variations for Load-Relief Controller

Controller
Parameter
Variations

Nominal System

+20¢ f(t)

-20¢ f(t)

+20¢ K

-20¢ K¢

+20¢ K_

-20¢ %

+20¢ K
Z

-20¢ K
Z

+20¢ K k

- 20¢ K"
Z

+10¢ K_

+20_ K

- 20¢ K

x 10 6lib Imax
(kp-m)

0.15

0.55

0.50

0.85

0.45

0.15

0.20

0.15

0.25

0.55

0.50

Oscillatory

Unstable

Vehicle
Parameter

Variations

+20¢ c1

+20¢c 1

+20¢ c 2

-2o¢ c2

+20¢ F-X
m

- 20¢ F-X
m

N'+20¢ --
m

-2o¢ N__'
m

I

+20¢
m

I

-2o¢ R
m

0.55

IIblma x x 10 6

(kp-m)

0.15

0.15

0.15

0.15

0.23

0.80

0.15

0.15

0.10

0.15

0.18

0.30
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Special mention should be made of the oscillatory and unstable responses

for the +i0 and +20 percent variations of gimbal-angle feedback Kf3. The

gimbal_angle feedback is a positive feedback loop which will cause system

is raised above I. 0 (K c is the forward loopinstability if the loop gain K c

is 1 0_ and the nominal value of K_ is 0.9, a small in-gain). Since K c .

crease in K will cause instability. As shown in the next subsection, the
c

gimbal_angle feedback may be replaced by an appropriate first-order

transfer function in the forward loop. With this change, the possibility

of instability due to changes in the gimbal-angle feedback is removed.

In many of the parameter-variation flights, the maximum bending moment

shown in Table 5..3 occurs within the last few seconds of flight. This is

apparently due to an attempt by the controller to null errors which have

built up during the flight. (It should be noted that many of the controller

gains go through rapid excursions during the last few seconds of flight.

See Appendix oi.I_Figures J-i through J-8o)

TaMe 5-3 also shows that the maximum bending moment for all the para-

meter variation cases is well within the required maximum of 2.25 x 106

kp.-mo In summary_ performance of the load-relief controller is not seriously

degraded by variations in the vehicle parameters or controller parameters

with the exceplion of increases in the K_ feedback gain° As indicated, the

K_ feedback gain may be replaced by a linear filter which eliminates the

system sensitivity to this parameter.

SIMPLIFICATION OF THE LOAD-RELIEF CONTROLLER

The nominal load._relief control system described in the previous subsection

is rather complex, it contains several time-varying gains and requires

feedback and feedforward signals which are not easily measured. From a

practical application standpoint_ it is very desirable to reduce the complexity
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of the controller as much as possible and to put it into a form whereby the

information required by the controller is easily measurable.

This section describes the simplification of the system in the following order:

The nominal load-relief controller is redefined in terms of the

information which would be available from realistic sensors

(i.e., rate gyros, accelerometers, etc.). This discussion

will illustrate the full complexity of the nominal load-relief

controller.

• Possible ways for simplifying the system are discussed.

The change in performance for each successive step in the

process of simplifying the system is presented.

Finally, the resulting simplified system is described and compared

with the nominal load-relief control system on the basis of system

complexity and performance.

Description of Nominal Controller with Realistic Sensing

The nominal load-relief controller has been designed with the assumption

that all information required by the controller is measurable. In practice,

this will not be the case. Consequently, the controller has been modified

to make use of state-of-the-art sensing techniques (e. g., rate gyros,

accelerometers, etc.). Figure 5-10 is a block diagram of the load-relief

controller with realistic sensing. As can be seen from the diagram, a body-

mounted normal accelerometer is used to obtain a signal proportional to

drift acceleration according to the following equation:

" " F-X "

m A
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Drift acceleration is then integrated to provide the drift and drift-rate

feedback signals required by the controller. This computation requires

that the longitudinal acceleration F-X/m and the accelerometer location

with respect to the center of gravity _A be measured or that estimated

values of them be stored as functions of time.

The wind angle-of-attack required for the estimator input (with a first-

or second-order estimator assumed) is obtained through the use of an

angle-of-attack sensor. The following equation is used in the mechanization

to derive the wind angle-of-attack:

t
_ = _sensed - _ _ V V "¢

The drift-rate term can be obtained from the integration of the drift accele-

ration, The vehicle velocity V and angle-of-attack sensor location with

respect to the center of gravity 4 must be computed or estimated as functions

of time. With these additional functions of time and a second-order estimator,

the nominal load-relief controller becomes overwhelmingly complex. This

system utilizes 17 functions of time. Fortunately, as the following discussion

will show, this system can be greatly simplified. Since the nominal load-

relief controller provides performance well within the design performance

constraints, a large degradation in performance due to system simplification

can be tolerated.

Possibilities for Simplification

The objective of the simplification process was to reduce the number of time-

varying gains and to reduce the number of feedback signals required. The

time-varying gains were simplified in one of three ways:
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The function was replaced by a constant value

The function was set to zero

The function was replaced by a piecewise constant approximation

Of course, setting a time-dependent gain to zero would eliminate the need

for the corresponding feedback.

Since the estimators were, in themselves, relatively complex, it was

desirable to determine if they were essential to maintain satisfactory per-

formance. The function of both the Case I and the Case II estimators was

primarily to obtain a measure of the wind-rate term, x. The _ term could

be obtained without all the complexity required for the estimator. Thus,

an evaluation was made to determine the significance of each of the esti-

mator outputs, _ and _).

Finally, some tests were made to determine to what degree drift acceleration

z could be replaced by body-normal accelerations. The question was asked:

"Could terms such as the compensation for having the accelerometer at some

location other than at the center of gravity (i. e. , the 6A $ term) be neglected?".

No attempt was made to simplify the deterministic input f(t). This function

could easily be combined with the standard pitch program and thus would not

constitute any increase in complexity.

Analysis of Simplifications to Load-Relief Controller

Simplifying the time-varying functions was first approached by taking each

function one at a time and replacing it by a constant value. Analog traces

of the system response to the mean wind for each of these variations are

shown in Figures N-23 and N-24.
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The following simplifications were tried one at a time:

• Set K ¢(t)

• Set Ks(t)

• Set Kz(t)

• Set K- (t)
Z

• Set KB(t)

-- 0. 035

-1
= 0. 12 sec

= 0

= 1 x 10 -4 rad/m/sec

= 0.90

These constant values were picked by examining each function and estimating

an average value. The drift rate gain K" actually takes on both plus andz

minus values over the flight. However, since a positive value was necessary

for the last portion of flight in order to reduce the drift-rate error to zero,

only a positive value was considered. As can be seen from Figure N-24,

settingK, equal to 10 .4 rad/m]sec resulted in a significant deterioration
z

in performance. All other fixed-gain approximations had only a small

effect on system performance.

Figures N-25 and N-26 illustrate the performance of the system with a mean

wind input for increasing level of system simplicity. Figure N-25(a) is anominal

system response to the mean wind for purposes of comparison. The following

simplifications were evaluated:

KiB(t) was found to be nearly constant, equal approximately

to 0.9. Thus, it was replaced by an equivalent gain the the

forward loop. Since the _ feedback was around the actuator,

it also changed the dynamics of the actuator. Thus, a lag-lead

network was added to the forward loop to account for this change

in actuator dynamics. This change is reflected in the simplified

block diagrams shown in Figure 5-11.
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Figure 5-ii. Modification of Gimbal Displacement Feedback

System performance with this modification is shown in Figure N-25(b).

No significant deterioration in performance was noted.

-i
K_ (t) was set equal to 0.12 sec Figure N-25(c) shows the

results with this added simplification. The over-all performance

was not seriously degraded.

K b(t) was set equal to 0.035. Figure N-26(a) shows the system

response with this added simplification. The performance was

degraded slightly by this approximation. The effect is most

evident at the burnout condition where large pitch rate and

bending moment were obtained. However, further simplifi-

cations eliminated these undesirable effects.
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K (t) was set equal to zero. This simplification alleviated thez

large excursions of the burnout condition and, of course, resulted

in a drift error at burnout. The drift error at burnout was well

within the allowable value, however. Responses are shown in

Figure N-26(c).

The drift-rate gain was approximated by the following fixed

values:

Kz(t)
-6

= 0.5 x 10 rad/m/sec

= 0

= +0.3 x 10 -4

= - 0.3 x 10 -4

These results are shown in Figure N-27.

All these values resulted in a significant deterioration in system performance.

These results pointed out the sensitivity of the system performance to the

variations in the Kz(t ) gain.

From these variations for the mean-wind response, it was concluded that

most all the feedback gains could be replaced by a constant value with the

possible exception of the drift-rate gain Kz(t).

Figures N-28 through N-32 illustrate the analysis results of the feedforward

gains Kx(t) and K (t). Runs were made with and without each of the gains

to determine their individual significance. For the analysis, each of the

NASA winds were used. The results of the analysis show that the Kx(t)

feedforward gain has little or no effect on system performance using the

N_SA winds. However, the K (t) feedforward gain does contribute to the

reduction of the bending moment. Since it is the primary function of the

Case I (or Case If) estimator to generate the x-feedforward, these results

indicate that the estimator is not required. In fact, all that is necessary
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is to measure the wind angle-of-attack c_0, subtract out the mean wind c_c0,

::nd multiply by a time-varying gain as shown below:

+

r V

LO

K
to

to control system

This result greatly simplifies the system since the estimator is no longer

required.

'l'hc system witb the above simplifications has the following control law

(retaining K _(t)):

iT S+I tl (_0-°_00) vu = 10 10T8 S+1 fit) + 0.035& + 0. 12¢ + Kz(t)_, + _-
S

K
CO

Figures N-33 and N-34 illustrate the performance of the system using various

i_[cccwise constant approximations to the Ii_(t) gain. The best approximation

;H terms of resulting performance turned out to be a simple bistable gain

_pproximation. The gain was initially set equal to -0.3 x 10 -4 rad/m/sec.
-4

\t 90 seconds into the flight, the K z(t) gain was switched to 0.5 x i0

rad/m/sec. An initially negative value reduced the stability of the system,

making it easier to turn the vehicle in anticipation of the wind. After the

peak winds occurred, the gain was switched to a positive value in an attempt

to reduce the drift rate to zero. This configuration resulted in acceptable

performance. The time responses (see Figure N-34) showed a large

s,vitching transient resulted when the drift-rate gain was switched. In

;,ctual practice, the gain would be blended smoothly from the one gain

level to the other to avoid this transient.
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Generation of drift rate from a body-mounted accelerometer was evaluated

to determine if the compensation of the body-acceleration feedback could be

simplified. Drift acceleration was obtained from the following equation:

" " F-X "

z = t + --&- £AAm _ _

I!

Figure N-35 illustrates the effect of eliminating the gA¢ term, and the effect

of eliminating the(F-X/m)@ term. The results indicate the gA@ term can be

neglected, but the(F-X/m) ¢ term cannot be neglected.

Time did not permit further analysis of system simplification. Additional

simplifications in measuring the wind angle-of-attack and in approximating

the(V/H)K gain could result in a still simpler system. However, with all

the simplifications considered, the system took the form shown in Figure 5-I 2.

A comparison with the nominal load-relief controller as shown in Figure 5-10

quickly illustrates that the system can be greatly simplified. This information

supports the ideas behind the synthesis technique which is the basis for this

study. That is to say, that the technique first derives a "best" system (in

terms of performance), and then, with the application of engineering approx-

imations, a practical controller is derived from this best system. This

approach to system design is much more appealing than the conventional

trial and error design which is currently in practice.

Performance Evaluation of Simplified System

The simplified system performance was evaluated for the mean wind, random

wind, and the NASA winds. Figures N-36 through N-38 illustrate the perform-

ance of this system for those wind inputs. The performance was compared to

that of the nominal load-relief system in terms of the performance require-

ments. Table 5-4 tabulates the maximum bending moment and terminal drift

error for both systems. These were the most significant responses. For the
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mean-wind disturbance the bending moment is three to four times larger

for the simplified system, and the terminal drift is 500 meters as opposed

to no drift for the nominal system. However, the simplified system's

performance was acceptable in terms of the performance requirements.

For the NASA wind, the systems are quite comparable in terms of the

bending moment, but the simplified system always had a larger terminal

drift. These results indicate that the system can be greatly simplified

without a serious degradation in performance.
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Table 5-4. Performance Comparisons Between the Nominal Load-
Relief System and the Simplified Load-Relief System

Maximum

Controller Bending Moment
(ko -m.)

Performance Requirement

Terminal
Drift

(m)

2.25 x 106 3000

Mean-Wind Disturbance

Nominal Load Relief

Simplified Load Relief

0.15 x 106

0.80 x 106

0.0

500

48-Second NASA Wind Disturbance

Nominal Load Relief

Simplified Load Relief

1.4x 106

i. 8 x 106

0

650

56-Second NASA Wind Disturbance

Nominal Load Relief

Simplified Load Relief

1.8 x 10 6

2.3 x 10 6

0

250

64-Second NASA Wind Disturbance

Nominal Load Relief

Simplified Load Relief

2.4 x 106

2.65 x 10

0

820
6

72-Second NASA Wind Disturbance

Nominal Load Relief 2.6 x 106 0

Simplified Load Relief 2.4 x 106 600

80-Second NASA Wind Disturbance

Nominal Load Relief

Simplified System

1.5 x 106

1.4 x 106

0

300
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COMPARISON STUDIES

The load-relief control system was compared with two other control systems

on the basis of performance and complexity. These two systems were the

minimax controller and a conventional controller, both of which were defined

under NASA contract NAS 8-i1206 (see Ref. 12, 15). The reason for

conducting this comparison study was to establish what improvement in

performance could be obtained with the load-relief control technique

relative to these other techniques. Further, it was the objective to determine

the cost in terms of complexity that must be paid to achieve the improvement

in performance. Before these systems can be compared, it is necessary to

describe both the minimax and conventional controllers in terms of their

respective block diagrams and the assumptions underlying their design. The

performance of each of the systems is presented for various vehicle and

controller parameter variations using the wind disturbances defined above.

Description of Minimax Controller

Figure 5-13 is a block diagram of the minimax control system. It consists

of attitude, attitude-rate, and angle-of-attack feedbacks. The system

configuration was derived from a drift-minimum controller configuration,

and the primary objective of the design was to provide a load-relief

capability° The gains for the controller were defined by applying optimal

control theory to a piecewise constant approximation of the vehicle for only

the first 84 seconds of flight° This period was divided into seven intervals

with a different constant approximation of the vehicle in each interval. The

disturbances used in the design were winds of bounded amplitude which

cause the maximum of any of several cost items to occur in each flight

interval, and each cost item is proportional to some physical quantity of

interest. The cost of a given controller is the maximum of its several cost

items. Optimal control theory provides a straightforward method of
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computing the cost of a finite set of controllers. The controller of the set

with minimum cost is called the minimax controller of that set° Bending

moment is weighed heavily in the cost items for the computations of the

gains°

The gains which were computed for the controller are shown in Figure 5-14.

For the simulation, the gains computed for interval seven were also used

for the time from 84 seconds until the end of flight° In the design of the

controller, gains were not computed for the last half of the flight. The

_ystem was designed for a rigid vehicle without consideration of actuator

_,nd sensor dynamics and the actual location of the angle-of-attack sensor.

Response of the nominal minimax controller to the mean wind, random, and

the NASA winds are shown in Figures N-39 through N-41o These responses

show satisfactory performance for the random-wind and mean-wind dis-

turbanceso However, the allowable bending moment is exceeded for all

NASA wind cases with the excepticn of the 48-second wind° This system

was designed to meet a maximum bending moment of 2° 7 x 166 kp-m instead

of 20 25 x 106 kp-mo A large switching transient occurs in the gimbal-angle

response when the K 1 and K 3 gains are switched at 74 seconds into the flight.

In practice, this transient could be minimized by an improved blending of

the gains° The magnitudes of the significant parameters have been tabulated

in 'Fable 5-5. As can be seen from this table, the bending moment for the

72-second NASA wind is nearly double the maximum allowable value. Other

performance parameters (eogo, _ + 0o388_) were not tabulated as they were

well within the allowed limits.

The controller and aerodynamic parameter variations evaluated with the

minimax controller were as follows:
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Table 5-5. Minimum Performance Results

Wind
Disturbance

Mean Wind

48 sec NASA

56 sec NASA

64 sec NASA

7Z sec NASA

80 sec NASA

Perform ance

Requirement

Maximum

Bending Moment
(kp-m)

i. 45 x 106

1.9 x 106

Z.5x 106

3.1x 106

3.9 x 106

Z.9 x 106

Terminal

Drift
(m)

800

1800

1600

550

0

Z00

Z. Z5 x 106 30O0

Terminal

Drift Rate

(m/sec)

14.5

30

Z7

ii

3

Z

4O

Controller

± 20% K 1

± 20%K 2

± 20%K 3

Vehicle

+ o
I

± 20_ c 2

± 20_ F-X
m

+ v

_- 20_ N'/m

± 20{ R'/m
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Responses of the system for these variations are shown in Figures N-42

through N-48. The data from these responses show the system to be

somewhat sensitive to the K 3 gain and the longitudinal acceleration F-____XXm

in terms of the drift error at burnout. However, this is to be expected.

It is the ratio of the angle-of-attack feedback gain to attitude gain which

determines the drift error. Further, the desired ratio of these gains
F-X

depends heavily on the time history of the longitudinal acceleration _ .

Description of Conventional Controller

Figure 5-15 is a block diagram of the conventional control system. It

is basically an attitude control system with added acceleration feedback

to provide the minimum required load-relief capability. All gains were

constant with the exception of the forward-loop gain K c. This gain took

on two discrete values over the flight.

v_

J J
_L I0 S + I

ACTUAl"OR

.0685 S + I

= ,J .75, t <- IOOSEC
K c / .23, t > IOOSEC

(x A: 9OM)

Figure 5- 15. Conventional Controller
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The conventional controller was not designed to provide primarily load relief;

rather the emphasis was placed on designing a system to provide positive

control of the first two structural bending modes. If a rigid-body vehicle had

been assumed_ there would have been no need to schedule the forward-loop

gain Kc; ioe., all controller gains would be constant over the entire flight.

The load-relief capability built into the system was based on meeting a

bending-moment constraint of 2.7 x 106 kp-m instead of the 2.7_5 x 106 kp-m

required of the load-relief controller. However, the system load-relief

capability was designed using a flexible vehicle and assuming that the 64-

second NASA wind was the worst wind. The system was designed assuming

third-order actuator dynamics but no sensor dynamics. Further, the system

was constrained to have a minimum response frequency of 0.5 rad/sec in

response to attitude commands. This constraint was not imposed on either

the minimax system or the load-relief system. This constraint severely

restricts the load-relief capability of the system. Since the conventional

controller was designed for a flexible vehicle, the system contained additional

filtering for bending-mode compensation. This filtering was not necessary

for a rigid-body study, and thus was not used.

Responses of the conventional controller to the mean wind, random wind, and

the NASA winds are shown in Figures N-49 through N-55. Significant

parameters for each of these responses are tabulated in Table 5-6. In

addition to the nominal conventional controller, responses to the NASA

winds were obtained for a drift-minimum controller and pure-attitude

controller. These systems were derived from the conventional controller

by simply setting the acceleration feedback gain to that required for drift-

minimum operation (io e., K A- 0.07) or to zero for pure attitude control.

Table 5-6 and the responses show that the conventional controller is nearly

identical in load-relief capability to the minimax controller. For all winds

considered, the maximum bending moment is nearly the same. However,

for the 48-second, 56-second, and 64-second winds, the conventional

controller has a smaller drift error at burnout. The minimax controller, on

the other hand, has smaller drift errors for the 72-second and 80-second
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Table 5- 6.

Wind

Disturbance

Performance

Requirement

Conventional Controller Performance Summary

Maximum

Bending Moment

(Kp-m)
, , ,' , .

2.25 x 106

Terminal
Drift

(m )

3000

Terminal
Drift Rate

(m/see)

4O

Nominal Conventional Controller

Mean Wind

48-sec NASA

56-sec NASA

64-sec NASA

72-sec NASA

80-sec NASA

Conventional

Mean Wind

48-sec NASA

56-sec NASA

64-sec NASA

72-sec NASA

80-sec NASA

1.65 x 106

2.0x 106

2.7x 106

3.3x 106

4, 1 x 106

2,8x 106

550

700

850

900

750

400

Controller - Drift Minimum Gains

2.1 x 106

2,8x 106

3°6x 106

4°2x l06

3°0x 106

I00

150

I00

I00

200

Conventional

Mean Wind

48-sec NASA

56-sec NASA

64-sec NASA

72-sec NASA

80-sec NASA
m

Controller - No Acceleration Feedback

2,2 x 106

3.2xlo 6

4.3x 106

4.8x 106

3.4x 106

1050

1350

1800

2350

2000

12

12.5

15

17.5

17

12

9

10

20

30

27
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winds. It is of interest to note that there is almost no significant reduction

in bending moment when going from the drift-minimum acceleration feedback

gain to the conventional controller acceleration feedback gain. This is not

the case, however, between a pure-attitude controller and the drift-minimum

controller.

Thus, one might argue that the drift-minimum gain would be more desirable

when comparing the change in bending moments and the corresponding change

in drift error at burnout. It was noted in the design of the conventional

controller that the bending moment was significantly reduced when the first

structural bending mode was included in the analysis. In fact, the analysis

showed that an acceleration feedback gain of 0.4 rad/m/sec 2 was required

to meet the bending moment constraint for the rigid-body model. However,

with the addition of the first structural mode, an acceleration feedback gain

of only 0.1 rad/m/sec was required to meet the bending -moment constraint.

The following parameter variations were analyzed for the conventional

controller:

Control Vehicle

+ 20%Kc + 20%c 1

+ 20% K A + 20% c 2

+ 20% K c + 20% N'/m

+ 20% T A + 20% R'/m

+ 20% _'A + 20% F-X
m

+ 20%V

Responses with conventional controller to the mean wind for these parameter
variations are shown in Figures N-56 through N-63.
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Analogous to the minimax controller, only variations in the accelerometer

F -__.__Xhad any
feedback gain K A and the longitudinal acceleration term m

significant effect on performance. The principal effect was in the drift at

burnout o

Performance Comparison With Load-Relief Controller

Table 5-7 lists the significant performance parameters for the nominal load-

relief controller, the simplified load-relief controller, the minimax controller,

and the conventional controller° All systems easily meet the terminal con-

dition constraints and the maximum allowable gimbal-angle constraint° Further,

all systems meet the bending-moment constraint for the mean winds, but all

systems fail to meet the bending moment constraint for two or more of the

NASA winds, However, it should be noted that the load-relief controller

produces a maximum bending moment for the mean-wind disturbance which

is a factor of 10 better than either the conventional controller or the minimax

controller° The reason for this significant reduction in the bending moment can

be attributed to the deterministic input in the load-relief controller. This

suggests that if wind biasing (i, eo, deterministic input) were to be added to

the other controllers then perhaps they also could achieve a significant reduc-

tion in the bending moment° In fact, this has already been demonstrated to

some degree on the present SaturnC-1 vehicle, In response to the NASA

winds, the load-relief controller again demonstrates a significant reduction

in the bending moment over that obtained from the minimax and conventional

controllers, However, the improvement is not as marked as in the case of the

mean wind°

For the random wind it is difficult to determine which system has the superior

performance; to do so would require making several runs with each con-

figuration and then averaging the maximum bending moments to establish a

trend°
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Performance Comparisons - Sissenwine Winds

Controller

Performance
Requirement

-6
Ib x I0 Z

, (kp-m) (m)

2.25 3OO0

+ o. 388 
(m/see) (rad/see) (deg)

I

40 0.0453

Mean-Wind Disturbance

Nominal Load Relief

Simplified Load Relief

Minimax

C onve nt ional

0.15

0.80

1.45

1.65

0

500

800

550

0

2.5

14.5

12

0.005

0

0.0025

0.002

0.10

0.60

0.75

0.65

48-Second NASA Wind Disturbance

Nominal Load Relief

Simplified Load Relief

Minimax

Conventional

1.4

1.8

1.9

2.0

0

650

1800

700

0

2.5

3O

12.5

0. 005

0

0. 0025

0

0.58

0.60

1.7

0.55

56-Second NASA Wind Disturbance

Nominal Load Relief

Simplified Load Relief

Minimax

Conventional

1.8

2.3

2°5

2.7

0

250

1600

850

0

2.5

27

15

O. 005

0

O. 0025

0

0.65

1.3

1.2

0.50
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Performance Comparisons - Sissenwine Winds (continued)

Controller

Performance
Requirement

IbX 10 -6 z
ikp-m) (m)

2,25 3O00

Z

(m/sec)

4O

¢" + 0. 388e
(rad/sec)

0.0453

(deg)

5

64-Second NASA Wind

Nominal Load Relief

Simplified Load Relief

Minimax

C onve ntional

2.4

2.65

3.1

3.3

0

820

550

900

Disturbance

0

2.0

ii

17.5

0.0075

0

0

0

0.82

2.0

0. 90

1.2

72-Second NASA Wind Disturbance

Nominal Load Relief

Simplified Load Relief

Minimax

C onve ntional

2,6

2.4

3°9

4.1

0

6OO

0

750

0

2.5

3

17

0. 005

0

0

0. 0025

0.55

1.6

1.3

1.8

80-Second NASA Wind

Nominal Load Relief

Simplified Load Relief

Minimax

Conventional

1.5

1.4

2.9

2.8

0

300

200

400

Disturbance

0

2

2

12

0.005

0

0

0

0.72

0.90

1.5

1.6
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Another significant difference between the load-relief controller and the other

controllers is the errors produced at burnout. Again the load-relief controller

is superior to the others since it brings all terminal errors to nearly zero.

With a simplified system, small terminal drift errors resulted. However,

these drift errors were well within the allowable limits.

Comparing the controllers on the basis of complexity, it is evident the conven-

tional controller is by far the simplest system, and the load-relief controller

is the most complex. Even the simplified version of the load-relief controller

is more complex than the conventional controller. Thus, it is seen that the

improvement in performance has been obtained at the expense of a significant

increase in complexity. It is anticipated, however, that further refinement of

the load-relief controller could result in a more competitive system in terms

of complexity.

Stability

Another area of comparison among the controllers is with regard to stability.

Both the load-relief controller, and the minimax controllers do not provide

a stable vehicle system configuration at all flight conditions, as shown in the

root locus diagrams of Appendix O. The conventional controller, however,

was designed to provide a stable system with specified gain and phase margins

at any given fixed flight condition (see Ref. 16). The root locus of the load-

relief controller was computed both with and without the drift-rate term. This

term affects the stability of the flight-path root. The drift term was not

included in the analysis since this feedback was insignificant for point stability.

Since all controllers satisfactorily controlled the vehicle over the trajectory

in the presence of wind disturbances, the question must be asked; "Is stability

at any one given flight condition necessary?" Without going into an exhaustive

analysis, it seems a reasonable conclusion can be made. Since the flight is

of bounded time (i. e., 150 seconds) any instability of a low-frequency nature

such as an unstable flight-path root should not seriously degrade the system
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performance {so long as the terminal drift constraint is met). However, higher-

frequency instabilities such as the short-period mode or one of the bending

modes would most likely result in unsatisfactory performance°

It is interesting to note that the frequency of the short-period mode for the load-

relief controller and the minimax controller was around 0. 1 rad/sec which is

rather lowo The conventional controller was constrained to have a short-

period-mode minimum-allowable-frequency of 0o 5 rad/sec to assure proper

following of the attitude pitch command program. This frequency constraint

was not imposed on either of the other controllers° Since the other controllers

exhibited a very-low-frequency short-period mode, it is anticipated they would

have difficulty following a pitch program with any degree of accuracy. It is

conceivable the pitch program ( and, hence, the trajectory) could be modified

to accommodate this low-frequency controller characteristic° Whether or

not this is a practical solution was not determined° It is rather clear that

the minimax controller would have considerable difficulty following any pitch

program since its attitude gain is zero for the first 20 seconds of flight° How-

ever, it is expected this gain could be set at a finite value for this interval

without seriously degrading the system's load-relief capability.

CONCLUSIONS

To summarize, it has been shown that the load-relief controller has demon-

strated superior performance over the other systems but at the expense of a

significant increase in system complexity° The system achieved a superior

load-relief capability primarily through the use of wind biasing and feedfor-

ward signals based on an assumed knowledge of the vehicle parameters and

wind models. The system minimized the terminal-condition errors by comput-

ing the drift and drift-rate buildup and integrating them to zero during the

last portion of flight, It was demonstrated that the system could be greatly

simplified° This fact verifies the philosophy behind the synthesis technique

developed in the study° This philosophy was to first design, using an analytical
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synthesis technique, a control system which would provide the "best" perfor-

mance. This step would then indicate how well one could expect to do in terms

of performance. Then by simplifying this "best" system one could readily

define a practical controller in terms of system complexity. This approach

differs from the more conventional technique of trial and error wherein the

analyst tries to find any system which will meet the requirements and does this

by relying entirely on past experience and engineering intuition. Although

the simplified load-relief controller was still more complex than the conventional

controller, it is anticipated that further refinements in the synthesis technique

will produce a more competitive control system.

It was pointed out that factors such as imposing stability constraints and a

requirement for following a pitch program were not considered in the design of

either the load-relief controller or the minimax controller. Yet, all systems

successfully controlled the vehicle. This suggests that the performance require-

ments be carefully reviewed in order to define a common set of criteria for

future studies.

It is recommended that possibly some flexible modes be included in further

development of the synthesis technique in order to make the vehicle model

more representative. It is also recommended that a complete time-varying

simulation be made which would include the steady-state terms in the equations

so that any techniques used for following a pitch program could be amply

demonstrated for a multitude of wind disturbances. By so doing, the total

gimbal deflection and, hence, total bending moment could also be computed.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

The "Design of a Load-Relief Control System" study is examined in retro-

spect in this section. Significant results, recommendations for future
studies, doubtful areas, open questions, etc., are discussed.

RESULTS

The goal of the study was to develop a load-relief controller design technique.

The goal was met. The design technique developed consists of casting the

load-relief problem as a linear, stochastic minimization problem, solving

that problem, and simplifying the resulting optimum contro!!er. It was
demonstrated that the stochastic optimum controller is a good controller

and that it can be successfully simplified.

Significant Results

The following aspects of the design technique are considered significant:

(i} The stochastic formulation of the load-relief problem is meaningful

and tractable. It incorporates into the design the stochastic nature

of the incident winds, the time-varying booster dynamics, and the

finite-time nature of the control problem. It treats the terminal

rotation and translation constraints together, it handles high-order

system descriptions, and it handles arbitrary sensor arrangements

and sensor noise levels. The formulation defines an optimum con-

troller and it provides a criterion for measuring the quality of any

linear controller. Its basis, minimizing an upper bound on the

likelihood that one or more booster responses will fall outside

preselected limits, is a meaningful and appealing design motivation.
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Through quadratic equivalence, the technique takes full advantage of

the wealth of quadratic theory results. These results define the form

and mathematical properties of the optimum controller, and they

provide an easy means for calculating its parameters.

The technique makes the physical nature of the control problem

evident. The coefficients of the first variation of the upper-bound

functional show what is easy to control, what is hard to control,

and where the control emphasis should be placed. The characteristics

of the optimum controller show how the difficult-to-control responses

should be handled. This insight is perhaps the most useful result

of applying the technique.

Less Significant Results

Quadratic equivalence implies two additional results:

(4) It provides a means of choosing quadratic coefficients in quadratic

theory applications. The inability to choose these coefficients has

been the major stumbling block preventing wide application of

quadratic theories.

(5) It establishes an equivalence between linear control problems. This

is a somewhat philosophical result; it permits determining whether

two cost functionals are equivalent in that their minimizations produce

identical controllers.

Good Luck Results

Two results of the study must be considered fortuitous:
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(6) The optimum load-relief controller was shown to be parameter

insensitive. Reasonable variations in the booster and controller

parameters did not seriously degrade over-all system performance.

(7) The optimum controller was successfully simplfied to an essentially

constant-gain form without severely degrading over-all system

performance.

These latter results may be general properties of quadratic controllers or

they may be particular properties of the "Model Vehicle No. 2" and the

nature of the load-relief problem. No mathematical analysis of why these

properties were obtained was made, and it was not known beforehand whether

the optimum controller would possess them. The insensitivity and simpli-

fication results must therefore be regarded as good luck.

Very Minor Results

Among the minor results were the following:

(8) The derivation of the expected number of occasions that a non-

stationary, non-zero mean, Gaussian random process exceeds a

prese!ected limit in a given time interval is novel. But the deri-

vation is really nothing more than carrying through the algebra of

Middleton_s formulation (Ref. 16).

.I.

(9) Showing that J -fun chonal is an upper bound to the likelihood of

mission failure is also novel. But the proof is very easy.

Physical Insight

The third result above claims that the stochastic design technique provides

insight into the load-relief problem. Regarding the "Model Vehicle No. 2"

examples run in the study, it showed that:
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(12)

(13)

(14)
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Meeting the terminal-response constraints is easy.

Meeting the gimbal-actuator constraints is easy.

The load-relief problem reduces to controlling the bending covariances

in the high-dynamic-pressure (max-q) region of the flight.

The feedback part of the optimum controller should be a low-frequency,

angle-of-attack controller because large gimbal motions would cause

more bending than angle-of-attack variations.

The feedforward deterministic input and the wind-estimator inputs

significantly improve the load-relief controller's performance. They

do this by bucking the wind-induced angle of attack.

RECOMMENDATIONS FOR FUTURE WORK

A lack of time prevented investigating many interesting issues that came up

in the course of the study.

Mathematical Recommendations

(i) The separation theorem should be proved for continuous time systems.

This theorem is the key to incomplete state measurement problems;

it permits dividing those problems into known control and estimation

problems.

(2) The existence and uniqueness of extremal solutions to the J

should be established for reasons of rigor.

(3) The conditions under" which quadratic equivalence can be guaranteed

should be derived. Quadratic equivalence is a powerful tool, and it

deserves better verification than it got in this study.

-minimization
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Convergence

(4.) We erred in not spending more effort on getting a better match of

the quadratic coefficients and the coefficients of the first variation

of the J*-functional. As a result we do not know how much smaller

J* and the peak bending covariances can be made.

(5) The "direct iteration" technique employed was simple and fairly

efficient. It could undoubtedly be made much more efficient with

a little tuning. With quadratic equivalence, it is an easier way to

find optimum control gains than direct minimization of the J* function-

al would be.

Doubts

(6) The J*-functional is extremely sensitive to small variations in peak

covariances. The sensitivity is due to the Gaussianess assumption;

2
7

-1/2b--
the Gaussian exponential e is a very sharp function of the

standard dev__ation _ for _ < < 7. This sensitivity is undesirable in

that it makes controller performance too sensitive to small vehicle

parameter variations. No way out of this dilemma is presently seen.

,J.,

(7} The J'-functional appears to be sensitive to bending moment rates.

The rate expression employed in the study was conjured for convenience.

Whether or not booster performance is sensitive to force rates and

high-frequency winds should be established.

Physical Problems

The booster model employed in the study was quite simple; the design technique

can easily handle more complex physical problems. The following are of inter-

est and can be treated:
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(8)

(9)

(lo)

(11)

Inclusion of realistic sensors, sensor noises, and sensor drifts.

Inclusion of the pitch attitude program in the formulation.

Inclusion of bending modes, fuel slosh, and engine inertia effects.

Inclusion of second-axis control.

FINAL COMMENTS

A fairly powerful design technique was developed in the study. The technique

employs statistics, optimization theory, and a significant amount of digital

computation. The optimum controller it produces is a very good controller,

but it is time-varying and complex, and it must eventually be simplified.

We feel that a bright engineer could design almost as good a controller

without all of the sophisticated theories the design technique requires. He

could, that is, if he had a great deal of insight into the physical nature of the

control problem.

The value of the design technique is not in its mathematics. It is that it

provides that physical insight. The insight makes it easier to design a

workable controller by simplifying an optimal controller than by conventional

cut-and-try methods.
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APPENDIX A

COEFFICIENTS

The coefficients of the "Model Vehicle No. 2" booster differential equations

are presented in this appendix as Figures A-I through A-28.
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Figure A-4
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APPENDIX B

WIND FILTER DETERMINATION

Three topics are discussed in this appendix, the selection of autocorrelation

parameters to best fit given wind covariances by a gradient method, the

derivation of the impulse response of the linear filter, white noise driven,

whose output autocorrelation is the exponential cosine

EIc0(hl)_O(hl+h)I = (cos a21h1+a3sina21hl)exp (a llhl)

and the conversion of that filter from an altitude scale to a time scale.

GRADIENT METHOD

Given an autocorrelation that is a function of unchosen parameters al, a2, a 3

E t_{hl) _0(hl+h) t = f(al, a2, a3, h',

the quality-of-fit measure of Section II can be written in the form

J = g(al, a 2,a 3)

Letting

ai i i

and expanding J in e produces

3

J = g((_ 1,_2 ,a3 ) + ¢ i_l.=
iu i i=l j=l i

+ higher order terms in
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If the values a. = _. minimize J, then
1 1

5g
-T_--. 1 = 0 for i = 1 .... 3

1 0l.
1

for if this were not true one could always find ¢ and _i such that the left side

of the above equation would be less than the minimized J.

Theoradientiterationsoeksstationar,valuesof(valueswhero:O)
.... 1

by the following procedure. Let cr lk be the k th guess at the mlmmlzzng a i, and

let the k + 1 th guess be

1

where _ is a small positive constant°

correct, then the corrections

It is clear that if the k th guess cr k. is
1

1

applied to subsequent iterations will be zero, and theiterative process will

have converged° If the k th guess is not the minimizing a i, then the correction

_g >0,will produce a k + i th guess in the direction of minimizing J (i. e., if

decreasing_ should decrease J, etc.). 1

The gradient procedure does not always converge, and often, when it does, a

great many iterations are required. Fortunately, it converged for the expo-

nential-cosine autocorrelation function to within two significant digits in 500

iterations°
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IMPULSE RESPONSE

The impulse response of the linear filter, white noise driven, whose output

has the above exponential-cosine autocorrelation can be obtained by computing
the output power spectrum.

The power spectrum of the output of above exponential cosine filter is

-sh -a 1 {h{
Ct0t0(S) = j e- e (cosa 2[h[+a 3sina 21hI) dh

J -sh -alhe e

o

+ J e sh e-alh

o

Performing the integrations,

(cos a2h + a 3 sin a2h) dh

'(cos a2h + a 3 sin a2h) dh

s+a I+ a2a 3 -s+a I + a2a 3
= +

(s+al)2 + a_ (-s+al)2 + a_

= F(s) F(-s)

where

and

F(s)
= V2(al-a2a3)

S+aO

a
o a 1-a2a 3
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the output of a linear filter with an impulse response f(h), driven by unity

white noise _ (h)

E
In(hl) _(hl+h)_ = 5(h) ,

where 6 (h) is the Dirac delta function is the convolution

0o

_o(hI) = J
--¢10

f(h2) _](hl-h 2) dh 2

The output autocorrelation is
r

t [
!

f(h2)_ (hi-h2)dh2j L_)_ f(h3)r_(h1+h -h 3)dh:_I

I (_ oo

E' :

!_J_ _
f(h2)f(h3)q (hI-h2)q(hl+h-h3)dh2dh3

cx_

I f
--00 --00

f(h2)f(h3)E_(h 1-h_ q(h 1+h-h3 ) dh 2 dh 3

.f3
--¢m --_

f(h2)f(h3) 5 (h-h3+h 2) dh 2 dh 3

/ f(h3-h) f(h3) dh 3
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The output power spectrum is

¢O 0o

0oo,s,: j e-Shj
--GO --00

f(h3-h) f(h 3) dh3dh

f -sh f(h3 )
e 3

s(h3-h)
e

f(h3-h) dh] dh 3

¢o

j _sh3= e f(h 3) F(-s) dh 3

= F(s) F(-s)

Hence, to achieve the desired exponential-cosine autocorrelation function, a

filter with a transfer function

F(s) = V2(al-a2a3)
s+a 0

(s+al)2 + a_

is required. The impulse response f(h) is then

I _ shf(h)- 2nj e F(s)

%/2(a 1 -a2a 3)

a 2

where U_l(h) is the unit step

U_.l(h) = 1 for h> 0

0 for h <_0,

(a0-al)2 + a22] 1/2 e

-alh

sin (a2h+ _) U_l(h )
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and
-1

'f = tan
a2

ao-a 1

CONVERSION TO TIME SCALE

The above wind-filter impulse-response is expressed in terms of altitude h.

The booster control problem is expressed in terms of time t, and it is

necessary to change the filter scale to time via the relation

t

h(t) : f h(t) dt
0

where h(t) is the vertical component of booster velocity.

The simplest way to do this is to convert the wind filter to state vector form.

The transfer function F(s) above can be synthesized on an analog computer

with the simulation:

n (h)

®

_(h)

where

c 1 = _v/2(al-a2a 3

c 2 =V2(al+a2a3)(a_+a_) - 2alc 1
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c3 = 1

c 4 = 2a I

c 5 = (a12 + a2 2)

This simulation can be described by the vector differential equation

d (h) 0 c3 ¢o(h c 1

'h[x,h,J Lx, ,j c2
(h)

This, in turn, can be rewritten in the matrix notation

d
d-'-h-[z(h)] = A[z(h)] + BE(h)

The goal of the scale conversion is to find a similar time-scale form

d
d't" [ z(t)] = F(t) z(t) + G(t) _(t)

where E (t) is white noise

E I_(tl) _(tl+t) / = R(t 1) 5(t) .

Values for F(t), G(t) and R(t) can be found by examining the coefficients of

the response-covariance differential equations. Let ¢(tl,t2) be the
fundamental matrix

d
d"Z ¢ (tl' t2) = F(tl) _(t 1, t 2)

_(tI, t1) = Io
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The solution of the time-scale differential equation is

t

z(t) = ¢(t,t o ) z(t o) +j
o

¢{t, _) G('O _(T) dr

The response covariance matrix is the matrix E (z{t) z(t) '>,, the prime (')

superscript indicating a transpose. That is, the ij th component of this
.th

matrix is the expected value of the 1 component of the vector z(t) times the
.th
] component of that vector. The response covariance matrix is then

E{z(t)z(t)ll =
E 1¢(t,t O) z(t O) +J ¢(t, "r) G(T) _(T) dr •

o

z(t o)' ¢(t,t o)' + j rl(l)'G('r)' _(t, 1-)' dn-
. 0

¢ (t,t o) E{z(t o) z(t o) 11 ¢ (t, to )t

+

t t

fJ
0 o

¢(t, T) G(,) E(n(*) n(P) 'lG(p) ' ¢(t, p) ' dTd 9

t

+J ¢(t, to) E(z(to)n(_)ltG(T) ' ¢(t,*)ldT
O

t

+ f ¢(t,T) G(T) E{_(_) Z(to) ll$(t, to) l dT
O

The last two terms are identically zero because, with a white noise input,

present states [ Z(to) ] are statistically independent of present and future

inputs [ _(_) ]o Substituting the noise covariance R(,) 8(9-T) into the above

produces:
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EIz(t) z(t)_l = ¢(t,t o) EIz(to) Z(to) 1 $(t, to) l

t

+ _ ¢(t, T) G(T) R(T) G(_)' ¢(t, _)'

%
dr

Differentiating with respect to time produces the covariance differential

equation

-d-{-,E (t) z(t) = F(t) E z(t) z(t) +E (t) z(t) F(t) +G(t)R(t)G(t)

A similar derivation with the altitude-scale differential equation produces

E (h) z(h) = AE (h) Z(h) ' + E iz(h) z(h) '

By application of the chain rule

_-E z(t) z(t) = _ _ z(h) z(h) _-

there results

F(t) : h(t) A

G(t) R(t) G(t)' = {a(t) BB' .

A t

By choosing

R(t)

then

G(t)

= 1

So
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The wind filter is then

d

where

E 5 (tl-t 2) .

n(t)
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APPENDIX C

DISTRIBUTED AERODYNAMIC (TRANSVERSE) STRIP
FORCES FOR A LAUNCH VEHICLE

In this appendix, data for the "Model Vehicle No. 2" are modified to exhibit

aerodynamic forces distributed along the length of the vehicle. This modifi-

cation eliminates unrealistic impulses in bending-moment-rate due to step

winds. The distributed loads can be approximated by adding more dynamics

to the plant representation.

The datapackage for "Model Vehicle No. 2"uses a lumped model approxima-

tion of the distributed aerodynamic forces. The lumped model seriously

neglects gust penetration dynamics. In particular, it estimates infinite

bending-moment-rates due to step winds. To eliminate this anomaly, an

integration that was performed in developing the lumped model is left undone.

Some "finagle" factors are introduced to permit using inconsistent aerody-

namic data. Unsteady aerbdynamic loads are estimated by the use of simple

theories and consistency with static loads is enforced by use of the finagle

factors.

The objective for the model developed here is a model that will yield qualita-

tively correct trends for the load alleviation study. The model is the simplest

that can be conceived. Results obtained from synthesizing load alleviation

controls for this model should be interpreted with caution and should be used

to determine the next iteration on the model.

The equations are derived on the assumption that, at a given flight condition

(dynamic pressure and Mach number), the aerodynamic load at a point on the

vehicle is due solely to the motion of that point. Integrating these loads across

the vehicle yields the force on a transverse strip. Herein, the unsteady aero-

dynamic forces are computed from Newtonian Impact Theory (Ref. 13) and

Piston Theory (Ref. 14) in a manner that is consistent with the lumped param-

eter data for Model Vehicle No. 2 supplied by NASA (Ref. i).
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Impact Theory is used to estimate the unsteady aerodynamic loads over the

portion of the vehicle where there is axial symmetry. Modified first-order

piston theory is used to estimate the unsteady aerodynamic loads over the

finned portion of the vehicle. Modifications consist of replacing the Mach

number effect of Piston Theory with the Prandtl-Ackert and Prandtl-Glauert

correction factors for supersonic and subsonic speeds. Transonically the

factors are limited to 2. Fin-trip leakage at supersonic speeds is estimated

by using a linear variation between the tip and the Mach cone.

Consistency between Model Vehicle No. 2 data and the unsteady aerodynamic

loads estimated by the above procedure is developed by enforcing agreement

between the old and revised models for constant wind gusts.

The unsteady loads are summarized next. The finagle factors are then

presented. Following the presentation of the finagle factors there is a dis-

cussion lumping the distributed loads. The air loads are then derived.

AIR LOADS

N

The normal air load on a transverse strip at station x is called t o; it is

the integral of the pressure across the vehicle at station x. The integral

of _ from tail to nose would yield the total normal force. Estimated

1 dto (called 1 "_ is tabulated below; q is dynamic pressure in kg/m 2,
q do q d_

is the angle of attack in radians, M A is Mach number, and t o is the esti-

mated transverse force in kg/m.

1 o

q do
- 21.223 - 2.45x for O. 63 < x < 1.63

4 19" 17} for M A < /32 and for 1. 63 < x < 2. 54
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8 9.17-
(2MA- v/3) 3. 14 - x

(;"5-_r3) V5 - 1
4

for/3 f 5

i _<MA< _andfor 1.63 <x<2.54

4

-V M 2 -1
A 9. 17- 3.14 - x

for vP5-_- < M A2
and for 1. 63 <x< 2. 54

! d% 4 {
q d_ -M?

19.22 ] J_
for MA<V__2 and for 2. 54 <x_< 3. 14

q

=8 19. 22 -(2MA-v/3) 3. 14-x

(J5- J 3) /5 _-I

4 {19.22 3.14-x
="_ 2 -1A VIM-A 2 - 1

dt o 4

dc_ V1 _MA2

31.26-3. 805x I

"-_- M A --= <M and for 2. 54 <x< 3 14for < <
-- _ 2

forJ---_ < M A
and for 2. 54 < x < 3. 14

r 3
for MA< -_- and for 3. 14<x<_ 5.05

: 8t31.26- 3.805x } for f2 -_ < MA<
J5

_ _ --_ and for 3. 14 < x <_ 5. 05

4
31. 26-3. 805x}

J5
for --_ < M A and for 3. 14 < x< 5. 05

= 21.6056 - 2.455x

= 1.1350

: 7.28 - 0.1830 {x-84.081

: 0.9875

for 5. 05 < x < 8. 32

for 8. 32 < x < 84. 08

for 84.08 < x < 90. 31

for 90. 31 < x < 122. 09



C4-

= 15. 82 - 0.4481x-122.09}-0.092 {x- 122.09} 2 for 122. 09 < x < 126. 51

O.6583

3. 91 {144. 86-x}

for 126. 51 < x < 142. 30

for 142. 30 < x < 144. 36

'"':<AGLE FACTORSi k

If there were no other aerodynamic data for Model Vehicle No. 2 than the esti-

mates just presented, they would be used without modification. The data

packages do present the side-force derivative, center of pressure, and bending

moments at some flight conditions. The transverse-strip estimates and the gross

_/ata are reconciled by introducing three finagle factors. These finagle factors

are functions of Much number and dynamic pressure (flight condition). They

etfforce agreement for steady-state conditions. Once the factors are known,

the strip estimates for use in the heave, pitch, and moment equations become

dtI dto

= (ff)l--_
dc_ dc_

dt 2 dt
- (ff)2 o

dg dg

dt 3 dt o
..... (ff)3

d_ dg

where

(ff)I

N _I1m

x N dt

o dxdc_
x T
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(ff) 2
- c I Ixx

xN dt
Fx --_ (x -Xcg) dx

" T

!

M

(ff) 3 =
V

If dt x

_ 0 (X X _ _ f• - - , dx + M'(x - x)

XT da XT

=" dt

om

d_
x T

V

,, , (ff)

-- (x _ Xcg)(X - Xcg ) + -- dx" dx'
m

The first two factors are presented in Figures C--I and C-2. These figures

indicate the distributed estimates are reasonably accurate for slow motions.

LUMPING THE LOADS

The equations previously presented may be revised to replace the distributed

air loads with equivalent lumped-parameter dynamic load build-up functions.

This would permit replacing the lumped-parameter representation that has

been used with one of higher order that correctly represents the distributed

air load. The revised equations would not display impulses in bending-moment

rate due to step winds.

The estimation of the lumped-parameter model for the side force will be

used to illustrate the procedure.

Figure C-3 presents the unsteady air load at the high-dynamic-pressure flight

condition. Integrating this and normalizing yields the normalized step response

for side force as presented in Figure C-4. The rapid changes in load are due to

the nose cone; first and second cone frustrum transition sections, and the fins.
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The lumping problem is thus the approximation of the step response of Figure

C-J4 with dynamics that have a similar step response. Once the form of the

approximating dynamics have been determined, optimization of the parameters

can be accomplished in a straightforward manner.

ESTIMATION OF UNSTEADY AIR LOADS

The sources of. and approximations to the aerodynamic theories are discussed

first. These results are then used to estimate the loads on the two and three

dimensional parts of the vehicle.

Aerodynamlc Theories

Pis+on theory is the basis for estimating the loads over the two-dimensional

!hnned} regions and impact theory is used for the three-dimensional axially

symmetric r egions.

Two-Dimensional -- First-order piston theory (Ref. 15) states that the unsteady

pressure difference Ap across a two-dimensional surface at high Mach number

is given by

Ap 4
= yviA q_ (C. 1)

The average steady-state Ap for thin airfoils at supersonic speeds is given by

the Prandtl-Ackert expression

Ap - 4 q_ (C. 2)

2 - 1
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and for subsonic speeds by the Prandtl-Glauert

CLio

Ap V '2q_
i - Mf

(c -3)

Considering the fin aspect ratio and present intentions it seems reasonable to

take CL = 4.
(Io

Equations (C. 2) and (C. 3) agree at Mach i. Equations (C.I) and (C. 2) are

about equal at high Mach numbers. It thus appears reasonable to replace M A

in Equation (C. I)bY_]MA2 _i ].

At unity Mach number MA 2 - I[ goes to infinity, and it is larger at all

transonic speeds than experiments show. The Prandtl correction factors

will be arbitrarily truncated at 2. Hence, the final two-dimensional piston

theory pressure difference will be taken as

5p =

- 4 1

qct if < 2

8 qct if i > 2

(c. 4)

{3 ,5
Tip leakage is assumed to be lumped in C L = 4 for M A <-_ For M A > -_

o

tip leakage is accounted for by linearly reducing the Ap calculated by Equation

(C. 4) by the inboard Mach line and the fin tip, i.e.,
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I
MACH LINE __

PISTON PRESSURE _
"_ 7"

I

/ /_= SIN-1 _

0 MA

.__ PRESSURE

-- LINEAR PRESSURE

For/3/2 < M A < _5/2 tip leakage is assumed to vary linearly.

Three-Dimensional -- The air loads on the axially symmetric and engine shroud

parts of the body are calculated from impact theory (Ref. 14) which estimates the

pressure on unshielded portions (unobstructed line of sight to the relative wind) as

2
p = pV N (C. 5)

where

P is the air density

V N is air velocity normal to the surface

the pressure on shielded portions is taken as zero

Vehicle Dimensions

The vehicle dimensions are assumed to be those presented in Figure C-5; this

comes from page 53 of Reference 13.
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Impact theory is used to estimate air loads on the parts of the vehicle except

for those between 1.63 and 5.05. Two two-dimensional area excludes the

396-inch strip between body stations i. 63 and 2. 54.

Tw o-Dimensional

Application of the piston theory results presented in Equation (C. 4) to the

geometry just defined is immediate. The results are presented in the equations

for body stations i. 63 to 5.05 under "Air Loads".

Three -Dimensional

The application of impact theory to unsteady air loads estimation is presented

in detail in order to display some assumptions made. The order of presen-

tation1is nose cone, cylindrical sections, transition sections, and shrouds and

aft body.

None Cone -- The surface of the cone in rectangular coordinate is:

.2 2 .2
f(_, % _) : % + _ - _ tan 2 @ : 0 (C. 6)

f(_,n,_')= _2 + r2. _:2 TAN2 6 = 0



- C!3 -

To integrate pressures around the cone, it is desirable to use polar coordinates

_,?

= ,_sinw tan @
TAN 8

= _ cosw tan 0. (C. 7)

A

The unit inward normal to the cone is

f _ -_ - _ + .itan2@_

fi :IVTI Vi2 +,q2 + _2 tan4@

= - cos@ sinw_ - cos@ cosw_ + sind_ (c. }_)

The wind vector is taken in the ,.-- _ plane so

= V sing{ + V cos ct_ (C. 9)

The velocity and pressure normal to the cone are

^ ^

V- = (V-.n)n = V n = V (-sing cos@ sinw + cosa sin@)n (C. I0)
n n

_ = V 2 2 2 2(V" n) 2 (sin w sin a - 2sinw sinc_ cosa tan0 + cos a tan2@)

sec2O
(c. 11)

- 2 ^
p =PV n

n (C. 12)

For p it was assumed that I=I<-I sothe formula is valid around the entire

cone; no part of the surface lies in the shadow.

direction is the integral of the component ofThe _ running load (t) in the

pressure in the _ direction

_, $-:¢tan P" i d_ + P'i d_
t = - _tan @
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+2 q--
sin

sec2 8
0

2r_ w)dw]f(0_,O,w)dw -_ f(a, O,
17

(C. 13)

where

f(_,O.w) = -sin2asin4w+ 2sina cos atanSsin 3w - cos2a tan 2 @sin2w

The integral

f Iu f((_,O,w)dw = -sin2a - sin3_0 cos_ _ 3cos _ sin w +_W
4 8

wL wL

[ 1 2 }w+ 2 sina cos atan@ _ cos w(sin _ + 2) u

wL

-cos (Itan 2 0 - _cos W sin W +

WL

(C. 14)

Hence, for the nose cone

N 16 sin 28 sin2(_
t = q_ 3 sec 8

32 sin2e
d__t = q_ 3 secS- cos2
da

(C. 15)

(C. 16)

Figure C-5 indicates the nose cone is between 142.30 < x <_ 144.86

The cone semi-angle @ is

Ii0

_ tan-i 39.37 _ 47. 6°
2. 56
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so for small (_

N

1 dt

_ d_
(3. 91)(144.86 -x) = 566. 4026 -3. 91x (C. 17)

for

142.30 < x < 144. 86

Cylindrical Sections

The surfaces of the cylinders in rectangular coordinates are taken as

f(_, _, _) : 0 = g2 + _32 _ R 2 (C. 18)

The surfaces in polar coordinates are

= R sin

= R cos W

(C. 19)

The unit inward normal to a cylinder is

n - m

Ivfl q_2 + ,q2

= - sin o_i - cos LUj (C. 20)

The wind vector is taken in the _ - _ plane so'_ = V sin¢_ +V cos ak

The velocity and pressure normal to a cylinder

A A

_7 = (-[7. n) n = V n = ( -V sinC_ sin _) _1
n n

(C. 21)

(_¢ • n) 2 = V 2 sin2a sin2m (C. 22)
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0 if sin c_ sin_ > 0

^ _jV2 ^pV 2 n = sin2e sin 2 mn if sin _ sinai < 0
n

(C. '2:_)

The pressure formula indicates that pressures on the backside is taken as

zero.

The _ running load in the ._ direction is the integral of the component of

pressure in the _ direction

F " +Y
R -R

• i sm

211

d_ - p • 1 sin _ d
i,

(C. 24)

Ifct > 0, the first integral on the right is zero; ifa < 0,the second integral on

the right is zero.

So for a > 0

2 _2_
= q D sin ¢_[-

I

= q D sin2c_ {-

3,1 2
= qD--ff- sin a

4
sin _d_

sin 3 }21r

cos _ 3 3

4 - g cos_ + g_ ,,

(C. '25)

for a > .0



- C17 -

For any

,_ 3_ 2
t = q D -_ sin _ sign a (c '2_)

This infamous result will be linearized and agreement will be enforced at 0.

radian so

1 dt _ 0.31r
- D

q da 8
(c '27)

From this and Figure C-3

N

1 dt _

q dc_

i dt

q da

1 dt _

q d_

0.6583 for 126. 51 < x< 142.20 (C.28)

0. 9875 for 90.31 ":. x< 122. 09 (C. 2}_)

1. 1850 for' 8. 32 < x < 84. 08 (C. 30)

Transition Sections -- The difference in the impact pressure formulae betwee_

the cone frustrum transition sections and the nose cone is in the shielding on

the former:

EDGE OF
/ SHADOW
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Again assuming the cone angle is greater than the angle of attack (8 > a), it

is seen that the nose cone formula, (C-13), previously developed can be

used except the area of integration should not include the shadow zone of

the sketch.

The edge of the shadow is

TT2 + (_ _ [k+C]tana}2 - R 2 = 0 (C. 31)

The polar coordinates of the surface of the cone are

= C sin • tan e (C. 32)

= C cos _tan @

Thus, the intersection of the edge of the shadow and the cone frustrum is given by

-I- C2tan 2 @ + [k + C] 2 tan2a - R 2 (C. 33)
_s = sin

2_ [k +_] tan_ tan e

where

TT/2 '

This and Equation (C. 13) yield

2TT TT-w

0 TT S

This could be differentiated with respect to a, but it is sufficient for present

purposes to develop numerical results. As for the cylinder, it will be assumed

adequate to linearize and to take the derivative such that _is correct at an

angle of attack of 0. 1 radian.
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2

_ : q] [ 16 sin 6 1 2 + 2)]3 sec-'_" sin 2 c_ _ 1 -_- cos Ws(Sin w s

+ 2 sin0__9 sin 2 (Isin 2w + 3 3 (_ _ 2_s)]2,, c_ [sin 2U s -_ s 8) +8
sec l_

2 + Ir - 2U s]] (C.35)+ sin3_ cos c_ _sin2u s

There are two cone frustrums to which the above formulae [Equations (C. 33) and

(C. 35)] are to be applied. Figure C-5 puts the front one between 122. 09 and

125. 51 and the aft one between 84.08 and 90. 31. The sketch below (taken from

Figure C-5) shows that the aft cone frustrum is affected only by the cylindrical

section between stations 90. 31 and 122. 09; the cylinder between 126. 51 and

142. 30 meters does not shadow the aft cone frustrum.

TAN -I 39.37 =.0691 RAD

20,21

ii0"

Q

,d _4
r-i ,.-t

33
TAN "I 39.37 =.0221 RAD

38.01

165"

l_

T
198"

1

The sketch and Equations (C. 33) and (C. 35) yield:

x C u 1 dt
S

(m) (m) (deg) q d_

126. 51 8. 84 16. 45 12. 04

125. 04 10. 31 30. 90 13. 65

123. 56 11.79 43. 20 15. 02

122. 09 13. 26 54. 40 15. 82

90. 31 31. 15 22. 40 6. 14

88. 23 33. 23 27. 40 6. 52

86. 16 35. 30 31. 70 6. 90

84. 09 37. 38 34. 70 7. 28
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These data can be approximated by

N

__-_-0 _0fx-_22ool_ -00_2Ix- _220_)_ ,__0_

for 122.09 < x < 126. 51 and

1 dt -7.28-0.1830{ x- 84.08] (C 37)q dot

for 84.08 < x < 90.31

Engine Shrouds and Aft Bod_. -- The shrouds are assumed to be cones centered

about the control engines. This permits estimating the loads (less the fin loads}

by use of the cone and cylinder formulae if the angles 9o, 91 , 92 , 93 , and $4

are known.
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It is assumed the crosswise component of the wind is coming from below. The

upward pressures on the cones and the cylinder are given by

28 _ + 2 - 2 + (signw 4) 2 - +1
sea _ TI

O

f(a, 8, _)dw (C.38)

t [TT+ _2 4= q 2 R sin2a sin W dw

_TI+_ 1

= q4R sin2_{- i-6sin4wl + 16

(C. 39)

The above will be evaluated at an angle of attack of 0. 1 radian and the assumption

will be made again that the derivatives are linear and agree at 0. I radian. At

0. 1 radian the top of the side cones between the body and the horizontal tangent

is shielded by the side of 396-inch section. The top of the cylinder and the

entire top engine shroud are shielded from:,the air blast.

Impact pressures will be determined at four equidistant points along the cone

shrouds and aft cylindrical section:

N

x _ 1 dt w wI w2 _3 w4
qd_ o

(m) (m) (deg) (deg) (deg) (deg) (deg)

8. 320 1. 352 0, 0
5. 757 3..915 6. 91
3. 193 6. 479 13.38
O. 630 9. 042 19. 68

8. 320 1. 352 1. 180
6. 390 3. 279 O. 8160
4. 470 5. 205 O. 5930
2. 540 7. 132 O. 3545

180.00 0.0 -90.00
110.25 76.5 -13.5
102.08 89.35 - 0.65

98.62 97.65 + 7.65

00.00 90.00
10. 50 79. 50
17. 60 72.40
26.60 63.40

The top data are for the engine shrouds and the lower are for the cylinder.

These loads were combined to develop the load equations for 0. 63 < x < i. 63 and

for 5.05 < x < 8, 32, The equations are presented in the "Air Loads jj subsection.



CONCLUSIONS

Simple air loads estimates have been made. They should prove satisfactory

for developing qualitative conclusions on the effects of gust penetration in

load relief control.
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A PPENDIX D

VECTOR DIFFERENTIA L EQUATIONS

In this appendix, the vehicle and wind filter equations described in Section II

are written in the first-order vector equation form

x = F(t) x(t) + Gl(t) u(t) + G2(t) vl(t) + G3(t) v (t)

r(t) = Hi(t)x(t) + Dl(t)u(t) + D2(t) vw(t)

CONSTANT-ANGLE-OF-ATTACK CASE

The case where the angle of attack is assumed constant over vehicle length

reduces to a seventh-order system.

-x R
-N_cp cg -N_cp

¢ 0 0 _u
I V I I
XX XX XX

X

Z

W

0 -hc 4 0 0 0

0 0

= 0

1

0

0

-N R

mW m

F-X N

m m

0 -14.6 0

0 0 0 0

h 0 0 0

0 1 0 0

The above equations are

N_cp
_H 0

IxxV

-hc 0
5

N

H 0

mV

0 0

0 0

0 0

0Z

B q

0
a

I1• 0¢
I
J

!

!o
X i

I!i
J

• i
z jo

+i1 4.. u4

_0

0

z 0 .

B

Nlcp

I V
XX

0

N

mV

0

0

0

0

0

v+ 0
W

0

Cl/h

0
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8

Ib

Ib

_,+0. 388a

z

z

B

0

0

0 R
x

a i o

1 0

0 0

0 0

0

0

- M a'

V

R •
z

-0.388

V

0

1

1

-14.6

M 8 '

R 8

0

0

0

0

0

Ma_

Re

0.388

0

0

0

0

M 'H
GL

V

R W

0. 388H

V

0

0

0

0

0

0

1

0

¢

X

z

8

¢

Z

0

14.6

0

+ 14.6M 8

0

0

0

U+

0

0

Mot

V

R V

0. 388

V

0

0

M i

E-Iv

v

where

-M'
C_

V

Mc_ 'H

x
V

R" : -(M '-M '
z _ (_

N 1

mV V

R@ = MS' - 14.6M_'

Mc_' R

V m

Re - VR z
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M !

H c_

R¢7 + _Hv

R V = -R z

H = q
v

WIND LOAD A PPROXIMATION

The case where the distribution of loads over the vehicle length is approximated

by a third-order filter reduces to a tenth-order system. The above equations

become those shown on the next two pages.
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where

!

Re = Mc_

R = (M'
x 2

N$cp MeTe Me
(1+_) +

mV 2 I V 2 V
XX

4V M a 'N

_ _M a')a 6 - _ a 2 +
X 2 mV

MeN

I V
XX

_" a 4

6V
R = M !_

x 3 a X
2

a 6

a 5 a 6

: ,( .... )R v M a
X 1 X 2

V M'N

Ma') a 5 a 1 --
X 1 mV

a 3
I V

XX

R_ = M@'

M a
•- 14. 6 M_: ..... +

V m V

ax
cg

I
XX

Re = Mct,

N Me Nicp

mV V I
XX

H =
V
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A PPENDIX E

THE UPPER-BOUND J*

In this appendix, it is shown that the functional J* defined by Equation (3.8)

is an upper bound for the likelihood of failure J defined by Equation (3.6).

Derivations of the terminal likelihoods P(a i) and the in-flight expectations

E {Nil making up J* are also presented.

NOTA TION

The notation is that employed in Section III. Given n response perturbations

r.(t) and n finite, positive constants ¥o' define a. to be the event1 1

J ri(T)J < ¥i'

and a. to be the event
1

J ri(T)J > Yi'

Let b.(j) be the event that the two conditions
1

d

at Itilt) J > 0
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are met simultaneously exactly j times in the interval [0, T]. Let b.(0) be1
the event that one of the events bi(J), j > 0, occurs. Let P(a i) be the probability

of the event ai, and P(bi(J)) be the probability of the event bi(J).

The failure _tikelihood J is the likelihood that not all of the events a1.... am,

bin+l(0) , . . . bn(0) occur. This is by definition the joint likelihood J,

J = 1 - P[a 1 .... bn(0)]

The functional J* was defined by

m n

i=0 i=m+l
E(N.)

1

where E(N i) was the expected number of occasions that

(0, T).

I ri(t)l exceeded Yi in

oo

= I J P(bi(J)).
E{ Ni} j=0

PROOF OF THE UPPER-BOUND PROPERTY

The upper-bound property is that

j-:,- > J

This inequality can be proved by considering the ways the mission can fail.

The ways the mission can fail are if the event

a 1 occurs, or the events

a 1, a 2 occur, or the events
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a1, a2, a3 occur, or the events

a 1 .... a m, bm+ 1(0) occur, or the events

al, .am, bm+l(0) , b (0), b (0)..... n-i n
occur

These are mutually exclusive events, so that

J : 1 - P[a 1,a2,.. .a m , bin+l(0) .... bn(0)] : P(a 1) + P(a 1,a 2) +

P(a 1,a 2,a 3) +...P[a 1 .... a m , bin+l(0) .... bn_l(0), bn(0)]

Now

P(a 1 .... aj, aj+ 1) = P(a 1, ..ajlaj+ 1) P(aj+ 1)

where P(a 1 .... aj I a.+_ ) is the conditional probability that events a 1 .... aj i j

occur given that event aj+loceurs. Since these conditional probabilities lie

in the range

0 < P(al,...ajlaj+ 1) < 1

then

P(a 1 .... aj, aj+ 1) ! P(aj+ 1)

and therefore

m n

j<_E p( i) + F
i=l i=m+l

P(bi(O))
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Since bi(0) is the event that one of the events bi(J) ,

these are mutually exclusive events, then

P[bi (0)] = I P[bi(J)]
j=l

Since

j > 1 occurs, and since

P[bi(J) ] < j P[bi(J) ] for j > 1

and

0 = j P[bi(J)] for j = 0

then

or

oo

j=O

P[bi(O)] <_. E(N i)

which,

Q.E.D.

coupled with the above inequality for J,

m n

= i= +i

lead s to

DERIVATION OF THE TERMINAL LIKELIHOODS P(a i)

It is assumed that the terminal response r.(T) is a Gaussian random variable
I

with a mean
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E[ri(T)] = ri(T)

and a variance

E[(r.{T) - ri(T)) 2] = a
(T) 2

i r i

The probability P(ai ) that I ri(T) l > Yi is

Prob (I ri(T) ! >Yi ) = 1 - Prob (I ri(T) l < Yi )

where

Yi

Prob (I ri(T)I < Yi} = _ PriiT)(X)
dx

-¥i

where Pr.(T)(X) is the Gaussian density
i

1

Pri(T)(X) = V2_ o
ri(T)

Letting

x-ri(T)

y -

ar. (T)
1

the terminal likelihood P(a i) may be rewritten

Yi-ri(T)

ri(T) 1 (
P(ai ) = I - _F_n exp 4) dy

-Yi-ri(T)

ar.(T)
1
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DERIVATION OF THE EXPECTATIONS E(N i)

E(N i) is the expected number of occasions that the two conditions

I ri(t)I = Yi

d

I,Iri(t)l > 0
dt

are met in the interval [0, T]. That is, it is the expected number of occasions

that l'Iri(t) 1 exceeds the limit ¥i"

To derive an expression for E(Ni), let x(t) and y(t) be the random processes

x(t) = ri(t)-" ¥i

y(t) = - ri(t) - Yi'

and letA andA
X

A :
x

be the events
Y

Ix(t) = 0 withx(t) > 0]

A : [y(t) = 0 with y(t) > 0]
Y

Then the expected number of occasions that Iri(t) l

sum of the expected number of occasions that the events A
X

E(Ni) = E[N(Ax)] + E[N(Ay)].

exceeds ¥i in (0, T) is the

and A occur.
Y

Consider the function x(t). Assuming ri(t) is Gaussian, x(t) is Gaussian,

x(t) and its time derivative x(t) have the joint Gaussian density

and
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P • (eL,_) =
XX

x l '
__ M-1l /j xJ

_ exp - 2
2_Wbe t M

I°-xi)

',V h (2 l" e

x = E[_ri(t)] - ¥i = ri (t) - Yi

d

= E__{_i(t)] = _ (ri(t))
dt

and

M =I. {(.,,I - q,,'}
((ri(t) _ ri{t)) ()i(t}- r(t))}

=IMI i MI21

E ((ri(t)- ri(t))(ri(t)- ri(t)Ol

In a time interval T <_ t < r + dr, the fraction of time that x(t) and x(t) ii(2

in the ranges

< x(t) < cL + dg

_3 < x(t) < 8 + d8

is the product

Pxx(Ct, B) dot d8
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The expected time spent in this "rectangle" is then

Pxx(a, 8) da d8 d1"

The time x(t) spends crossing from a to a + da (or vice versa) is the distance

d_ divided by the velocity ] x I = B, or

dx da
dt =-- =

This is the time spent in the above rectangle on each occasion of crossing it.

The expected number of occasions that x(t) and x(t) lie in this rectangle is then

the expected time spent in the rectangle divided by the time spent in the

rectangle on each occasion of crossing it, or

Pxx(a, 8) da d8 dv

dt
= I B I Pxx(a, B) dB dv

The expected number of instances in the interval v < t < v + dv that the event

A x occurs is then the sum, over all the rectangles for which _ = 0 and S.> 0,

of the expected number of instances per rectangle,

7
O

[81 Px_(O, S) dB d_"

Finally, the expected number of instances that A occurs in [0, T] is the sumx

over all d_" intervals of the expected number of instances per interval

T co

E[N(A)]: c,7 181Pxx(0,8)dBld 
0 0



-E9 -

Computing the inner integral

I .+i P×k(o, +)
I+1

2+7_M 11 M22-M122

-1/2
e

2
Mll M22 - M12

Isl

2v-_M 11M22-M12

-1/2
e

2

((x)2M22+ (8-x)2M11 + 2M12(B-_)x)

2
MllM22-M12

-2
X

_ i 2M1

V
M12

MI1

MI 2 )2
fi- .Q+x MI 1

e

2 M22

2
M12

MI1 ]

Defining

r
x

M
12

Mll

G
X

_

M12

M
11
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then

f
Jo

t_3 I Pxx (0, ;5)d¢_ = 1• e

VS ,Mll

_2
x

2Mll

.aD

5
J

_) V2VO x

2
e 22

x

1._.iting

x

X

'l'i:ts becolnes

-2
X

2M 1l e 1

\ 2 TrM I 1

CD

x

x

(3 Z-F
x x

21T

2z 2
dz

_}_ !ining

r
9

1 _l/2z -

e_(V) = f -- e
dz

_,_,d noting that

d 2
-1/2z -1/2z

--0 =-ze
dz
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then

CO

Jo! _ 113[ Pxx (0, _)d_ -A,/2_MII

-2 r XX

2M 1 oe 1 x 2e 2o + r $ -
2_ × x . ._

The derivation of E N(A ) is similar, differing only in a few sign changes.
Y

Combining all of these results,

T

+ P (t)] dtY

where

X O. x
1 2M 1

Px(t) -'_ 2TTMlle 1

_ ___.X__ Ox
_ 2M 11 e 1

Py(t) ._M11

,,22 1" (l:l/e 20 + r _ --rx -1
X x

where

x = F.(t)-_,.
i i

3; = -Fi(t) - Yi

_ Mr2
r = x

x Mll
r(t)
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r

Y

M12

M
11

X

-_ MI2
M22 -.

MII

Mll = E[ (ri(t) .-. ri(t))21

M22 : E{(rl(t)- ri(t)) 2}

M12 : E{(ri(t) ri(t)) (ri(t)-rl(t.I) )

This completes the derivation of the F[Ni} expectations

The above derivation follows the derivation of the Rice formula for stationary

Gausslan processes presented by Bendat (Ref. 2). The extension of Bendat's

derivation to non-stationary processes involved only including the general

Gaussian density in the integral

A slightly different derivation, employing impulse functions, is given in

Middleton (Refo 16).

MOMENTS

It is to be noted that the expressions for both P(a i) and E{ Ni} are functions

only of first and second response moments (means and covariances). This is,

of course_ due to the fact that Gaussian random processes are completely

described by their first and second moments.
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The upper-bound functional J* is thus a functional of first and second moments.

Define r(t)

r(t) = E{r(t))

to be the vector of mean responses, R(t)

R(t) = r(t) r(t)'

to be the matrix of mean response products, and S(t)

s(t) - cov{r(t)r(t)')

to be the response covariance matrix. The ij th component of R(t) is then

Rij(t) = ri(t) rj(t)

and the ijth component of S(t) is

Sij(t) = E f (ri(t) - ri(t))(rj(t) - rj(t))]

In this notation the upper-bound J* may be written in the form

T

J* - fl(S(T), R(T)) +7 f2(S(t)' R(t))dt
O

where the functions fl' f2 are defined by the above equations.

The fact that J* can be written as a functional of first and second response

moments is essential to the quadratic equivalence described in Section III.
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A PPENDIX F

TAYLOR'S SERIES MOMENT EXPANSION

Response covariance and mean-response-product matrices were defined in
Section III. The quadratic equivalence assertion presented there was based

on being able to expand these matrices in finite Taylor's series.

In this appendix it is shown first that these moment matrices exist (their
coefficients are defined and are not infinite for t _[0, T]). Their existence

is then used to validate constructions of finite Taylor's series expansions.

FORMU LA TION

Given the linear system

x(t) = F(t) x(t) + Gl(t) u(t) + G2(t)_l(t) + G 3 (t)v(t)

r(t) = H l(t) x(t) + Dl(t) u(t) + D2(t) vu_(t)

re(t) = H2(t)x(t) + n2(t)

where

x(t) =

u(t) =

r(t) =

m(t) =

you(t) =

V}l (t) =

system state vector

control input vector

responses to be controlled

measured responses

vector of deterministic inputs (vu_(t) known for all t > 0)

vector of white noise processes
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El_l(t) _I(T)') = I6(t-T)

_2(t) = vector of white noise processes

E[_q2(t) _2(T)'I = V(t) 5(t-T)

Ef_l(t) _2(T)'} = W(t) 5(t-T)

Let F(t) be the mean response vector,

r(t) = E Jr(t)}

let R(t) be a matrix of mean response products

R(t) : r(t) r(t) _

and let S(t) be the response covariance matrix

S(t) = coy [r(t) r(t)'] : E_ Jr(t) - r(t)] Jr(t) - r(t)]')

_XISTENCE OF S(t), R(t)

Given a controller

u(t) = L(t,m[O,t]),

let y(i, j, t, _) be the system impulse responses

y(1, j, t, T) = r(t) when
_lj (t) = 5 (t- _)

_qli (t) : 0

_2(t) = 0

vw(t) = O,
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y(2, j, t, 'r) = r(t) when _2j(t)

_2i (t)

_1(t)

v (t)

and y(3, j, t, _') = r(t) - D3(t) vcu(t) when

v (t)
W.

J

"_'W.(t)
i

= 0

-- 0

= 0

5(t-r)

6(t-'r)

0, i_j

i_j

rl I (t) = 0

r)2 (t) = 0

Let ¥(i, t, 1") be the matrices

y(i, t, T) = F_y(i, 1, t, 1")y(i, 2, t. 'r)...y(i, m, t, _']

Assuming for the moment that the functions y(i, j. t _') exist, from lincarity
t

- ] -r(t) = D3(t) v(t) + "((3, t, 'r) V0(T ) dT

O

so that

t t

R(t) = .F I y(3, t. _')vu)(_") vLu(z)'5'(3, t, z)' d'rdz +

o o



- F4 -

t

+J" [y(3,

0

t, T) vw(r) v (t)' D3(t)' +D3(t) val(t) v o(_')' y(3, t, r)'] dr

+ D3(t) vw(t) vm(t)' D3(t)'.

Similarly

t

S(t) =f

O

[y(1, t, _')y(1, t, _)' +¥(1, t, _')V(v)¥(2, t, _')'

+ y(2, t, _')V(r)' ¥(1, t, _)' +y(2, t, I")W(_')y(2, t, _')']d,

Both S(t) and R(t) will be continuous if it is specified that the coefficients of

v0flt),D3(t), V(t) W(t) are continuous, and it can be shown that the functions

y(i, j, t, _')are bounded.

Consider the Volterra integral equation of the second kind

t

f
0

K(t, I")x(r) dr - x(t) = _(t)

Given K(t, T), pt(1"), this equation has a solution for x(t) (x(t) exists) if _t(t)

is piecewise continuous and the integral

t

y K(t, r)dv

o
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1
is piecewise continuous The solution is

x(t)

t

= _(t) + f ( z
i=o

O

Ki+l(t, _'))u(1")d_"

where

Kl(t, v) = K(t, v)

t

Ki+l(t, v) = _ K(t, z)Ki(z , T)dz

O

The impulse response equations can be put into this form by appropriately

limiting the class of admissible controllers L.

Limiting L to the form

u(t) = L(t, m [o, t])

t

= C(t) m(t) +

0

A(t, v) m(T) dT

t t

= C(t) H2(t) x(t) + f A(t, T) H2(_) X(T) dT +C(t) t?2(t) +_A(t, T)_2(T)dv

o O

1
F. G. Tricomi, Integral Equations, Interscience Publishers, Inc., N.Y., 1957.



-F6 -

then

:::(t) = FF(t) +:- gl (t)C(t) H2(t)]x(t) +

t

f G (t) A (t,

O

r) H2(_') x(_) dv +G2(t)_jl(t)

t

+G3(t) vuj(t) +Gl(t)C(t) rl2(t) + J_ Gl(t) A(t, _-) _2('r) d,r
O

Integrating both sides of this equation, by defining

t

_(t) = -x(0) - f FG2(r)_ _1(_') + G3(f) vt_(T) + GI(r) C('r) T12("r)

o

+

'r

f Gl(r) A(r,

O

t I) _12(t 1) dt 1] dr

and

K(t, 'r) = F(_') + G

t

fG
I"

l(tl)A(tl, _r) H2(_') dt 1

the equation reduces to the above Volterra equation.

,-'oefficients of F(t), Gl(t) , C(t), H2(t ) and the integral

t

Gl(t l) A(tl, r) dt 1

'1'

Then x{t) exists if the
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are all piecewise continuous. Adding that Hi(t), Dl(t), D2(t) are bounded,
r(t) then exists, and the impulse responses y(i, j, t, _') therefore exist.

EXPANSION IN FINITE TAYLOR'S SERIES

Let

u(t) = Lo(t , m.F_o,t]) + eLl(t , m[o,t])

where ¢ is in the range -1 < c < +1, and let

2x2 n- 1x(t) = Xo(t) + Cxl(t) + c (t) +. + ¢ x (t)"" n-i

Substituting these expressions into the system equations and equating terms in

¢, there results

Xo(t) = F(t) Xo(t) + Gl(t) Lo(t , mo[O , t]) + G2(t) Tll(t) + G3(t) vw(t)

too(t) = H2(t) Xo(t ) + _12(t),

xi(t)i = F(t) xi(t) + Gl(t) [Lo(t , mi[o,t]) + Ll(t , mi_l[O , t])]

mi(t} = H2(t ) xi(t)

Xn_l(t) = F(t) Xn_l(t) + Gl(t ) [Lo(t ,rnn_ 1 [o,t]) + L l(tlmn_2[o ,t])]

+ CGl(t) Ll(t, ran_ 1 .F_o, t])

mn- 1 (t) = H 2 (t) Xn_ 1 (t).
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The first n-i terms, Xo(t) .... Xn_2(t), are independent of c, and by virtue of
the above existence result, all n-2 terms xi(t) are bounded for any c in the
range -i < ¢ < +i.

The corresponding responses r(t) are

r(t) = ro(t) + srl(t) +o..+ cnrn(t)

where

ro(t) = Hl(t) Xo(t) + Dl(t) Lo(t, mo[O, t]) + D2(t) vw(t)

ri(t) : H I (t) xi(t) +Dl(t) [Lo(t, mi[o,t]) + LI(L mi_l[o,t])]

rn(t) = Dl(t) Ll(t _ mn_l[O, t]).

The first n_l terms, ro(t) .... rn..2(t) , are independent of c. The impulse

responses y(i, j, t, _') are therefore expandable in a finite Taylor's series

n

y(i, j, t, _) = _ cKyK(i, j, t, _')
K=o

where the first n-2 terms of the expansion are independent of c and all n+l

terms are bounded for ¢ in the range -i < c < + i.

R(t) and S(t) are then expandable in c

R(t) = Ro(t) + CRl(t) +... + ¢2nR2n(t)

S(t) = So(t) + CSl(t) +... + e2nS2n(t)
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where

YK(i, t, I") = [YK(i, 1, t, _) YK(i, 2, t, _')... YK(i, m, t, _')],

t t

Ro(t) = J 2 Yo (3't' _) v (_') vw(z)' ¥o(3, t,z)' dzd1"

O O

+

t

o

¥o(3, t, _') vw(v) vw(t)'D3(t)' + D3(t) vw(t) vt_(1") ¥o (3, t, _')] d_

+ D3(t) vw(t) v_(t)' D3(t)'

t

S°(t) = S [Y°(l
o

• t, I") ¥o(1, t, I")' + Yo(1, t, 1") V(1") Yo(2, t, "r)'

+ Yo(2, t, _) V(_)'Yo(1, t, v) + Yo(2, t, v) W(_') ¥0(2, t, _)]dv

and for 1 < i < n

t t
i

Ri(t) = _ _ ; ¥j
j=O O O

+

t

o

(e,t, 1") v (1")vt_(z)' ¥i_j(3 , t, _')'dzd_"

[Yi(3, t, _) vuflT) v (t)' D3(t)' +D3(t)' v (t)vw(v)Yi(3, t, _)']dv



S.(t) =
1

ti

r J" [yj
J=O 0

- FIO -

(1, t, T) Yi_j(1, t, _')_ + y j(1, t, _') V(I") Yi_j(2, t, "r)'

+ yj(2, t, v)V(1")'Yi_j(l, t, I")' + ¥j(2, t, I") W(v)yi..j(2, t, _')' ]d1"

and for n <i < 2 n

t t

n c.R.(t) = Z _

1 j =i - n _o O

yj(3._ t I") v u(1") v_(z)' Yi_j(3, t, 1")'dv dz

t
n

si(t)= z 2
j=i.-'n

O

[¥j(1, t, v) Yi_j(1, t, _')' + yj (1, t, r) V(_) ¥i_.2(2, t, _)'

+ yj(2, t, I") V(_')' yi._j(1, t, _')' + yj(2, t, v) W(_') Yi_j(2, t, _')' Ida"

Again, the first n-.2 terms in these expansions are independent of ¢,

2n+l terms are bounded for' any ¢ in the range -1 < ¢ < +1.

and all

Choosing n _> 2 and dehning

2n

2R2. ie (t) = _ ¢ Ri(t)
i=2

,:, 2n •
¢ 2S 2 ' (t) = 52. cts i(t)

1=2

The above series become

2R 2 "'¢(t)R(t) = Ro(t) + ¢ Rl(t) + ¢

2 *
S(t) = So(t) + e Sl(t) + s S 2 (t)
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R 1 S 1 ......where Ro, So, _ are independent of c and the coefficients of R 2 , S 2

are bounded for c in the range (-i_ I). This is the form of the expansion

employed in Section III in the expansion of J* and J*_'_.



APPENDIX G

DIFFERENCE EQUATIONS

The solution to the difference equation formulation of quadratic control problem

described in Section III is presented in this Appendix.

STATEMENT OF THE PROBLEM

Given the linear system

x(t) = Fit) x(t) +Gl(t) u(t) +G2(t) v (t) +G3(t) _l(t)

r(t) = Hl(t) x(t) + Dl(t) u(t) + D2(t) vw(t)

m(t) = H2(t) x(t) + _2(t)

where vw(t) is a deterministic (known) time function, the inputs _l(t) and

_2(t) are independent white noise processes

E f_l(t) _l(tl)'} = Wl(t)6(t-t 1)

E {_2(t) _2(tl)'} = W2(t) 5(t-t 1)

E {_l(t)_2(tl)'} = W3(t)5(t-t 1)

and the initial state mean and covariance are known

E[x(o) ]= x(o)

E{(x(o) x(o)) (x(o) - x(o))' ]: X(o)

12013-FRI
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find the linear control functional of past and present measured outputs m(t)

u(t) = L(% m[o,t]),

that minimizes the quadratic J**

T

J','-'-* = TR[Q(T) S(T) + V(T) R(T) +[ (Q(t) S(t) + V(t) R(t)) dt],

O

where R(t) ls the matrix of mean response products

R(t) = r(t) r(t) _

and S(t) is the response covariance matrix

S(t) : E I(r(t)- r(t)) (r(t).. r(t))']

The matrices Q(t)_ V(t) are assumed to be symmetric and non-negative

definite for all t ¢[O_T]0 the matrices Dl(t)' Q(t) Dl(t) and Dl(t)' V(t) D 1

are assumed positive definite for all t e[O, T]_ and it is assumed that

(t)

Q(T) DI(T) = V(T) DI(T) = O.

DIFFERENCE EQUATIONS FORMULATION

Choose a larg% finite integer N and let

T

At :_
N



I
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Define

A(n) = I + At F(nAt) Hi(n) = Hi(nAt ) Wl(n) = Wl(nAt)

Bl(n) = At Gl(nAt) Dl(n) : Dl(nAt) W2(n ) = W2(nAt )

B2(n) = At G2(nAt) D2(n ) : D2(nAt ) W 3 (n) = W 3 (nAt)

B3(n) = At G3(nAt) H2(n ) : H2(nAt) Q(n) : Q(nAt)

vw(n) : vw(nAt) V(n) : V(rdlt).

The above quadratic problem may then be restated:

Given the linear system

x(n+l) = A(n) x(n) + Bl(n) u(n) + B2(n) Vw(n) + B3(n)'_l(n)

r(n) : Hi(n) x(n) + Dl(n) u(n) + D2(n) vw(n)

re(n) : H2(n) x(n) + _2(n)

where

E [_i (n) _ql(nli'}

w 1 (n)

- if n = n I
At

: 0 if n _ nI

E {_2 (n) vl2(n 1)'}

W2(n)

:-- ifn=n I
At

: if n # n 1,



W3(n)

At

=0

E{x(o)} = x(o)

E{(x(o) .- x(o))(x(o)

find the ]';near functional

n

u(n) : X L(n, i) m(i)
i =o

- £(o))'}

that minimizes the quadratic J','-;

J** : TR[(Q(N) S(N) + V(N) R(N) +

where

R(n) =

S(n) :

- G4 .-

ifn =n I

ifn#n
1

= x(o)

n.-.l

7

n--o

At(Q(n) S(n) + V(n) R(n))].

r(n) r(n)'

E ((r(n)- r(n))(r(n)-' r(n))' ]

It is assumed that Q(n) and V(n) are symmetric and non-negative definite

for N:0, . ..N, and Dl(n)' Q(n) Dl(n) and Dl(n)' V(n) Dl(n) are positive definite

for n < N and

Q(N) DI(N) = V(N) DI(N) = 0
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SOLUTION OF THE DIFFERENCE EQUATION FORMULATION

The solution to the above difference equation problem follows that presented

in Section III for the differential equations problem. The optimum control is

of the form

u(n) = KQ(n) _(n) + [Kv(n) - KQ(n)] x(n) + fv(n)

where x(n) is the apriori mean state

x(n) = E [x(n)]

and _(n) is the conditional estimate

_(n) : E[x(n) Im(o) .... m(n), u(o) .... u(n-l), v (o),...v0fln-l) }.

The gains Kv(n) and input fv(n) are the solutions of the backwards difference

equations

Pv(N) = HI(N)' V(N) HI(N)

g(N) = HI(N)' V(N)

Kv(n) = - [Bl(n)' Pv(n+l) Bl(n) +At Dl(n)' V(n) Dl(n)]-i

[Bl(n)' Pv(n+l) A(n) +At Dl(n)' V(n) Hi(n) ] •

fv(n) = - [Bl(n )' Pv(n+I) Bl(n) +At Dl(n)' V(n) Dl(n)]-I .

[Bl(n)' (g(n+l) + Pv(n+l) B2(n) vw(n)) + At Dl(n)' V(n) D2(n) vw(n)]

Pv(n) = [A(n) + Bl(n) Kv(n)]' Pv(n+I) [A(n) + Bl(n) Kv(n)] +



- G6 -

+At [H(n) + Dl(n) Kv(n)]' V(n) [H(n) + Dl(n) Kv(n) ]

g(n) = [A(n) + Bl(n) Kv(n)]W [g(n+l) (Bl(n) f(n) + B2(n) vtll(n)) ]

+ At [H(n) + Dl(n) Kv(n)]' V(n} [D2(n) v_(n) + I)l(n) f(n)]

The gain KQ(n) is the solution to the above when V(n) is replaced by Q(n).

The solution to the Kalman's state estimation problem is

:_(n)= x I(n) + x(n)

xl(n+l) = (A(n) - L(n) H(n)) xl(n) + L(n) m (n)

where L(n) is the solution of the forward Riccati equation

P(o) =X(o)

At L(n) = [A(n) PTl(n) H(n)' + B3(n)

W 3 (n) W 2 (n) - 1

] [H2(n) P (n) H2(n) + ]
&t

Wl(n)

P (n+l) = A(n) P l(n) A(n)' + B3(n) &t B3(n)'

- &t L(n) [H2(n) P (n) H2(n) +

W2(n)

] L(n)' &t.

The matrix P (n) in these equations is the covariance matrix of the estimation

error x(n)- f_(n)

_(n) = x(n) - f_(n)

Pvl(n) = cov[ _'(n)_'(n)'}

= E[ _'(n)_'(n)'}
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The estimation error _(n) has zero mean,

:0

A state covariance transition matrix can be derived from this property.

With

x(n+l) = A(n) x(n) + Bl(n) K(n) :%(n)+ B2(n) vw(n) + B3(n) Dl(n)

x(n+l) = A(n) x(n) + Bl(n) K(n) x(n) + B2(n) vt_(n)

then

Then

x(n+l) - x(n+l) = A(n) (x(n) - x(n)) + Bl(n) K(n) (i(n) - x(n)) + B3(n) _l(n)

= (A(n) + Bl(n) K(n)) (9:(n)- x(n)) + A(n) _(n) + B3(n) _ql(n)

coy [x(n+l) x(n+l)') = E {(x(n+l) - x(n+l)) (x(n+l) - x(n+l))'}

= (A(n) + Bl(n)K(n))E[(i(n) - x(n)) (:_(n)- x(n)) 0 (A(n) + B 1

+ (A(n) + BI(n)K(n))E [(i(n) - x(n)) _'(n)'} A(n)'

+ (A(n) + BI(n)K(n))E [(i(n) - x(n)) _ql(n)'] B3(n)'

+ A(n)E _(n) (i(n) - x(n))'] (A(n) + Bl(n)K(n))'

+ A(n)E{_(n)_'(n)'_ A(n)' +

(n)K(n))'
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+A(n)E{_(n) Hi(n)'}B 3(n)'

+ B3(n)E{_ql(n)(i(n)- x(n))'}

+B 3

+B 3

(n)E{_91(n)_(n)'?A(n)'

(n)E{_i(n)_91(n)'1 B3(n)'

(A(n) + Bl(n)K(n))'

Since x(n), i{n), and hence _(n), are functions of past inputs,

of the current {white} input _lin)' and

-x{n}! = E{_'(n) Hi(n)') = 0

From above

E((:_(n)- x(n))_'(n)']I = E{_(n)_'(n)') - x(n)E_'(n)'}

= 0-0=0

they are independent

Hence

cov{ x(n+l) x(n+l) } :

CA(n) + Bl(n) K(n))' + A(n) Elf(n) _(n)'}

With _ - x : x - x - x,,

E [,(_(n)- x(n}) (f¢(n)- x(n)]

(A(n) + Bl(n) K(n)) E{ (x(n} - x(n)) (i(n) - x(n})'}

A(n)' + B3(n) E{_]l(n) _l(n)'} B3(n)'

= E [(x(n) - x(n)) (x(n) - x(n))'}

- E[ (x(n) - x(n)) _'(n)'} ,-E_'(n) (x(n) - x(n))"}

+ E _:'(n)_(n)' }

= cov[x(n)x(n)'} - 2E{_(n) _(n)'} +E [_'(n)_(n)I,
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then

W 1 (n)

Bl(n)K(n))' +A(n) P (n) A(n)' +B3(n ) B3(n)' .
At

- P (n)] (A(n) +
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APPENDIX H

PARTIAL DERIVATIVES OF J*

The minimization of the upper-bound J* by the iteration procedure described

in Section IIl requires calculation of various partial derivatives of J*. The

formulas for these derivatives are presented in this appendix.

The functional J* as defined in Appendix E is the form

T

J':-" = fl(S(T), R(T)) + fo f2 (S(t)' R(t)) dt

where the functional fl

functional f2

r(t) to be

is the sum of the terminal likelihoods,.,_ P(ai), and the

is the sum of in-flight expectations E _N_. Defining the vector
% i/

r(t) =

q

%(t)
ib(t)

¢(t) + 0. 388 a(t)

z(t)

z(t)

the terminal partial derivatives are

_fl _fl

_R.. _S..
13 13

-0 for i # j

5fl _fl

_R.. _S..
ii ii

-0 for i < 5
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2 --2

¥i _ ri

2S.
_fl e ii

2_S°Rii ii

/'+.K \

sin
r.

i

for i = 5, 6, 7

2 --2
Yi +r. 1

5f 1 2S..e 11

5S..11 2rfSii _ , **
for i = 5, 6, 7

Tile partial derivatives of the in-flight term f2(S(t), R(t)) are a little more

complex. The derivatives

_f2 _f2

8R.. BS..
M 13

= 0 for

all i > 4

all j > 4

i = 1, 2, j = 1, 2

i = 3, 4, j = 1, 2

The derivations for the i = i, 2, j = i, 2 and the i = 3, 4, j = 3, 4 terms arc

similar. For the i = i, 2, j = i, 2 terms

_2 i

x Ox ---2
_ 1 e 2Mll e + r

Px(t) ¢_ _i_ x

21 e 2Mll 2 _ax/ + r
Py(t) _/-2rrM 1 1 e Y
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where

x = r(t) -Y r = r I

y = -r(t) - y r r2

MI2 MII = SII

rx = x _ - F(t)
Mll

MI2 = S12 = $21

M
- 12 :-

r = y + r(t) • M22 = $22
Y Mll

--_M _r" 1 2
M12 z - _- x

r e

x 22 Mll ___ 2r_

dx

The partial derivatives with respect to any variable z are

...... = p 1 -Mtl bx x

3Z x bz 2 3"z 1
2Mll --

+P
Y

MII -MII _ 3y

-- 2 %-£ _1[_ 5z 2Mll

+

+

e 2 fox
e 2Mll %

L _/2-_-
"%/2_M1 1

_2
_:7

2M 1e 1 X

_z

2

e

_/2_

_r

+ x
_z

_r
x

+ 8z ( rv )o
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where
bx

bsT.=
ij

bS..
1j

: 0 for all i, j

8M1 1

bS
11

bMll
.... 0 for i, j, # i

bS..
13

x

hR..
13

= 0for i, j

2
box -M12

bSll 2Ml12Ox

bO
x 1

bS22 2o x

bo x bo=_____x= -MI2

bSI2 bS21 2MII° x

ax _-_y _ 1

5RII 5RII 2_

bR12 5R21 3R12 5R21 2r

5r x -xM 12

bS 2
11 M 11
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_r -.yy M12

2
5Sll Mll

5r 5r -
X _ X X

bSl2 _$21 2Mli

5r 5r -
Y Y Y

....._2 = 5S_T 1 -2Mll

br 5r
x _ y

bS22 5S22

=0

..........=
bRll bRll Mll

...........Y = bY M12

_Rll bRll Mll

5r -bry -1
X __

bR22 bR22 2r

.... x = x_.__ = bx _ _12 + ---r--

bR12 bR21 51%12 Mll 2r

br br 3_z /M12_ 1
Y = _ _ [ 1-....

_R12 _R21 _r12 _111] + 2f

The partial derivatives of f2 with respect to i = 3, 4, j = 3, 4 terms are the

above with 1 replaced by 3 and 2 replaced by 4.
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APPENDIX J

CONTROL GAINS AND RESPONSE MOMENTS

Control gains and response moments for the simplest case controller are

presented in this appendix as Figures J-i through J-22.
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Figure J-i

K¢ versus Time
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Figure J- 2

K_" versus Time
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Figure J- 5

K_ versus Time
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Figure J-8

f(t) versus Time
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Figure J- 9

Mean Response of Gimbal Angle
for the Simplest Controller
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Mean Response of Gimbal-Angle
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Mean Response of Bending Moment
for the Simplest Controller
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Figure J-12

Mean Response of Bending-Moment
Rate for the Simplest Controller
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Figure J-13
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Figure J-19

Bending- Moment-Rate Covariance
for the Simplest Controller
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APP ENDIX K

GAINS AND ESTIMATOR ERRORS

Gains and estimator errors for the Case I, Case If, and Case III Kalman

estimators are presented in this appendix as Figures K-1 through K-6.
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APPENDIX L

RESPONSE COVARIANC ES

Response covariance comparisons for various controllers are presented in
this appendix as Figures L-1 through L-20.



L2-

10-4

10 -5 ,

i0 -6 .

I0 -7-

i0-8.

i0-9.

iO -I0

10 -4

10 -5

Figure L- 1

Gimbal Covariances for
Various Controllers

10-6

10-7

10-8

coy {_/,/_/,/lo
( IQd/SeC )"

-- CASE 2

1012
I I I I I

25 50 75 I O0 125 150

TIME ( SECONDS )
10 II

I0 I0

Figure L- 3 ,09

Bending- Moment Covariances
for Various Controllers ;°8

107

10 6

K x : K =0

CCV [ _(t/ _ (tl I _'_'-- CASE _l
(rad) 2

S
J I t I I I

0 25 50 75 I00 125

TIME, ( SECONDS )

150

Figure L-2

Gimbal-Rate Covariances
for Various Controllers

I I i I I I

25 50 75 I O0 125 150

/1ME ( SECONDS )



- L3 -

Figure L- 4

Body-Bending Rate Covari-
ances for Various Controllers
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A PPENDIX M

ANALOG SIMULATION

This appendix contains a description of the time-varying flight simulation

mechanized on a hybrid digital-analog computer. The simulator was used

primarily to evaluate the load-relief controller using various wind disturbances.

A conventional control system and minimax control system were also evaluated

on the simulator for the purpose of comparison with the load relief control

system.

The following vehicle equations of motion, wind generator, and conventional

control system were simulated on the analog computer portion of the simulator:

• Vehicle Equations

• °

¢ = Cl_ - c2_

F-X N / R l

z = -- ¢ +-- a +-- B

m rn m

N' R

-- +--g +--S
m m

F-X

= z" - tA ¢" _-_ ¢
m

v -z
_J

0_ = ¢ + ---
V

Ib = MC_' a +MB ' B
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• Actuator Dynamic s

= -14.6S + 14.6u

• Conventional Control System

U

x A

K
C

0.1= Kc " 10S+I

= 90m

< 100 sec

> 100 sec

Stochastic Wind Generator - The stochastic wind generator is

shown in Figure M-l, where

_ - -3/2 -1
d 1 0.97 x 10 6 m c_1 = 0.95 x 10 -4 m

-2 -1/2 -4 -1
d 2 = 1.38 x 10 m c_2 = 0.735 x 10 m

and K is a scale fac.tor adjusted to make re(t)equal to unity.

Figure M-1. Stochastic Wind Generator
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The following load-relief control system and minimax control system were
each simulated on the digital computer:

• Load Relief Controller

u = f(t) +K¢(t) +K¢(t) ¢ + K_(t) B +K z(t) _,

+ Kz(t) z + Kw(t) w + Kx(t)x

• Minimax Control System

u = K l(t) ¢ +K 2(t) ¢ +K 3 (t)

In addition the Case I and Case II estimators were also simulated on the digital

computer. Their block diagrams are as shown in Figures M-2 and M-3.

All the data used in the simulation is as plotted or tabulated in the text of the

report and, hence, is not duplicated in this appendix.

The simulation employs the following equipment:

(1) Pace 231-.R Analog Computer (100 amplifier) - This is the primary

analog computer. The linear vehicle equations and linear portions

of the wind generator and state estimators are simulated on it.

(2) Digital --Analog Hybrid Computer, consisting of:

(a) Scientific Data Systems 9300 Digital Computer. The digital

computer is used to simulate the control law.

(b) Pace 231-R Analog Computer (20 amplifier)

This computer is used mainly as a link between the digital

computer and the primary analog computer.
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v (t)

_(t)

A ,[ ](t) =H_ _ (t) - _ (t)

/_" (t) _ (2a_l+L(t))x(t)+ L (t) "2" 2+ 2 ) A(t )=- _ (t) - h ( 1 a2

A

x (t)
w,,,-

Figure M-2. Case I Kalman Estimator

v (t)

-__ (t)

A

/_ A m

=hx + L2 (v g- vu_ - _)A
U_

,,k, ", 2 2 A -

_¢ =-2alH "x-H (al +o_ 2 ) _o +LI( _ _A)

X(t)

A

x(t)

Figure M-3. Case II Kalman Estimator
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(3) Nonlinear Equipment -

(a) Comcor -. This is a nonlinear electronic device that generates

four output variables as a function of a single input variable.

For purposes of this simulation, time is used as the input

variable.

(b) Pace Diode Function Generator (DFG) - The diode function

generators are used to generate some of the time varying

vehicle parameters (c N_J M' etc. ).
I' m c_

(c) Pace Servo Multipliers with Padded Potentiometers - This

particular application of a servo multiplier is used to generate

a time function and simultaneously multiply it with a second

time function.

(d) Pace Electronic Multipliers - The electronic multipliers are

used to obtain the product of two time-varying functions.

Analog diagram symbols are defined in Figure M-4, and a block diagram of

the simulation is presented in Figure M-5. Analog computer patching dia-

grams are presented in Figures M-6 through M-10. Pot settings are tabulated

in Table M-I. The digital computer program is not presented since the

computer link language, is not a standard language. Thus, the information

would not be of much value to someone not familiar with the Addage 770 link.
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Figure M-4. Analog Diagram Symbols
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Table M- 1

Analog Simulation Potentiometer Settings

Pot

P00

01

02

03

04

05

06

07

08

09

Qoo

Ol

02

03

04

05

06

07

08

09

A NA LOG

Parameter

Description

¢c/100

K¢

(5:73 KA)/T A

K
C

10/57.3

Time Function

Time Function

57.3/102

10/57.3

RMS Wind

A dju st

Scale Factor

Scale Factor

Scale Factor

2(57.3)/103

10/57.3

Scale Factor

Scale Factor
1/16

(Z
g

Value

Var

0.7 500

0. 5730

0. 750

0. 1750

1. 0000

0. 133

0. 5730

0. 1750

Calib.

0.100

0.01

0.1000

0.2000

0.1145

0. 1750

0. 625

Vat

HYBRID ANALOG

Parameter

Pot Description Value

P00

01

02

03

04

Q00

01

o4

o5

Scale Factor

Scale Factor

8(1024)/104

Scale Factor

Scale Factor

Scale Factor

Scale Factor

Input
_6 50

0.i (--)
37.3

0.8000

0.8000

0.8190

0.8000

0.8000

0. 1250

0. 139

0.125

0. 0873
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Table M- 1

Analog Simulation Potentiometer Settings (Cont.)

Pot

26

27

28

29

35

36

39

45

46

47

48

49

ANA LOG

Parameter

De scription Value

5/57.3

10/57.3

10/57.3

0.388 (10/57.3)

I/W A

Scale Factor

Relay Switch

105d 1

10d

103 (261)

106 (_12+c_22)

K clt > I00 see

0. 0872

0. 1750

0. 1750

0. 0679

0.10

0.125

0. 4600

0. 097

0. 1379

0_ 1900

0.0144

0. 3070
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t

APPENDIX N

ANALOG RESPONSE TRACINGS

The analog response tracings obtained in the analog-simulation tests

discussed in Section V are presented in this appendix as Figures N-I

through N-63.
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a) CASE I ESTIMATOR b) CASE II ESTIMATOR

Figure N-I. Comparison of Actual x A and 0)A Signals from Stochastic Wind
Generator with Estimated x and _o from Estimators
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$
,E't'TZIt_I

i

La'rlul.l. _ II,A't'll
(x/sin)

I

Figure N-7. Load-Relief Controller, No Estimator (K x = K = 0) -
NASA Wind Response (72- and 80-second a inputs)
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Figure N-9. Load-Relief Controller, Case I Estimator - NASA Wind

Response (72- and 80-second c_ inputs)
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Figure N-24. Simplification Investigation of Load-Relief Controller -

Response to Mean Wind [(a) K z = 10 -4 , (b) Kfl = 0. 9]
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a) + 20 PERCENT Kc (FORWARD LOOP GAIN) b) -20 PERCENT Kc (FORWARD LOOP GAIN)

Figure N-46. Minimax Controller, Controller Parameter Variations -

Response to Mean Wind [(a) +20_K c, (b) -20_K ]C
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APPENDIX 0

ROOT LOCI PLOTS

Root loci diagrams for Model Vehicle No. 2 with load-relief and minimax

control are presented in this appendix for various flight times in Figures

0-i through 0-23.
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Figure O-i

Vehicle plus Load-Relief Controller-

t = 8 seconds, u = Kc(K¢_ +K$_)

-0.32 -0.28 -0.24 -0.20 -0.16 -0.12 -0.08 -0.04 0.04 0.08

Figure 0-2

Vehicle plus Load-Relief Controller-

t = 64 seconds, u = Kc(K@@+ K_)
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Figure O- 3
Vehicle Plus Load-Relief Controller-

= 80 seconds, u = Kc(K¢¢ + K,_)t
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Figure 0-4

Vehicle Plus Load-Relief Controller-

t=149 seconds, u = Kc(K$¢+ K._$)

Figure 0-5

Vehicle Plus Load-Relief Controller-
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Vehicle Plus Load-Relief Controller-
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Vehicle Plus Load-Relief Controller-
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Model Vehicle No. 2 with Minimax
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Model Vehicle No. 2 with Minimax
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Model Vehicle No. 2 with Minimax
Controller - Interval 7, u = K

[ (1.3 - 0.45)_ + 3.4 _ + 0.45ca ]


